
ARCHITECTURAL FRAMEWORKS FOR
AUTOMATED DESIGN AND OPTIMIZATION OF

HARDWARE ACCELERATORS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Tao Chen

May 2018

c© 2018 Tao Chen

ALL RIGHTS RESERVED

ARCHITECTURAL FRAMEWORKS FOR AUTOMATED DESIGN AND

OPTIMIZATION OF HARDWARE ACCELERATORS

Tao Chen, Ph.D.

Cornell University 2018

As technology scaling slows down and only provides diminishing improve-

ments in general-purpose processor performance, computing systems are in-

creasingly relying on customized accelerators to meet the performance and en-

ergy efficiency requirements of emerging applications. For example, today’s

mobile SoCs rely on accelerators to perform compute-intensive tasks, and dat-

acenters are starting to deploy accelerators for applications such as web search

and machine learning. This trend is expected to continue and future systems

will contain more specialized accelerators. However, the traditional hardware-

oriented accelerator design methodology is costly and inefficient because it re-

quires significant manual effort in the design process. This development model

is unsustainable in the future where a wide variety of accelerators are expected

to be designed for a large number of applications. To solve this problem, the

development cost of accelerators must be drastically reduced, which calls for

more productive design methodologies that can create high-quality accelerators

with low manual effort.

This thesis addresses the above challenge with architectural frameworks

that combine novel accelerator architectures with automated design and optimization

frameworks to enable designing high-performance and energy-efficient accelera-

tors with minimal manual effort. Specifically, the first part of the thesis proposes

a framework for automatically generating accelerators that can effectively toler-

ate long, variable memory latencies, which improves performance and reduces

design effort by removing the need to manually create data preloading logic.

The framework leverages architecture mechanisms such as memory prefetch-

ing and access/execute decoupling, as well as automated compiler analysis to

generate accelerators that can intelligently preload data needed in the future

from the main memory.

The second part of the thesis proposes a framework for building parallel ac-

celerators that leverage concepts from task-based parallel programming, which

enables software programmers to quickly create high-performance accelerators

using familiar parallel programming paradigms, without needing to know low-

level hardware design knowledge. The framework uses a computation model

that supports dynamic parallelism in addition to static parallelism, and includes

a flexible architecture that supports dynamic scheduling to enable mapping a

wide range of parallel applications to hardware accelerators and achieve good

performance. In addition, we designed a unified language that can be mapped

to both software and hardware, enabling programmers to create parallel soft-

ware and parallel accelerators in a unified framework.

The third part of the thesis proposes a framework that enables accelerators

to perform intelligent dynamic voltage and frequency scaling (DVFS) to achieve

good energy-efficiency for interactive and real-time applications. The frame-

work combines program analysis and machine learning to train predictors that

can accurately predict the computation time needed for each job, and adjust the

DVFS levels to reduce the energy consumption.

BIOGRAPHICAL SKETCH

Tao Chen attended Fudan University from the year 2008 to 2012, where he re-

ceived his Bachelor of Science degree (with distinction) in Microelectronics. Af-

ter graduation from Fudan University, he began pursuing his Ph.D. degree in

the School of Electrical and Computer Engineering at Cornell University, where

he worked with his advisor, Professor G. Edward Suh, on topics in the field of

computer architecture, with a focus on hardware accelerators.

iii

This dissertation is dedicated to my parents.

iv

ACKNOWLEDGEMENTS

Six years ago, I arrived at Cornell to pursue my Ph.D. degree. At that time, I was

a young student who was nervous about the challenges ahead, and was uncer-

tain if I could make it to the end. Six years later, I have successfully completed

this dissertation and become a doctor. I am extremely grateful to have so many

people help me along this exciting and rewarding journey.

First and foremost, I would like to express my sincerest gratitude to my ad-

visor, Professor G. Edward Suh. Throughout my Ph.D. study, Ed has supported

me without reservations and provided valuable guidance, advice, encourage-

ment, and help whenever I needed them. Ed gave me the freedom to pursue

research directions that I am passionate about, and at the same time providing

necessary guidance so that I can stay on the right path. Ed is always ready to of-

fer his generous help, whether it is about brainstorming ideas, revising a paper,

or perfecting a conference talk. Ed is also always encouraging when I face diffi-

culties, which helped me stay optimistic and motivated through the challenging

journey of working towards a Ph.D. degree. I am deeply grateful to him.

I would like to thank my committee members, Professor David H. Albonesi

and Professor Zhiru Zhang. Dave is a role model to me as a great computer ar-

chitect who is passionate about research and teaching. Dave’s course on mem-

ory systems is one of the most exciting classes that I took, and inspired me to

pursue the research on memory optimizations for accelerators. Zhiru’s vision

and his pioneering work on high-level synthesis is a major source of inspiration

for my research. He also provided many helpful suggestions and comments

that greatly improved my work.

I would like to thank Professor Christopher Batten for his guidance and sup-

port, and for generously sharing the research infrastructure that his group de-

v

veloped. Chris also mentored me on the parallel accelerator project and pro-

vided many insightful suggestions and advice. I am sincerely grateful to him.

Special thanks to my friends and colleagues at CSL who helped me tremen-

dously both with my research and with navigating graduate school. I would like

to thank members of the Suh Research Group. I want to thank Daniel Lo for pro-

viding many helpful comments and insights that greatly helped my research. I

would like to thank Ruirui (Raymond) Huang and Wing-kei (KK) Yu for sharing

their experiences as senior Ph.D. students. Special thanks to Yao Wang for pro-

viding great suggestions and directions throughout my Ph.D. journey. I would

also like to thank Andrew Ferraiuolo, Mohamed Ismail, Benjamin Wu, Weizhe

(Will) Hua, and Mulong Luo for their support and friendship, which made my

life as a Ph.D. student a lot more enjoyable. Special thanks to Shreesha Srinath

for being both a mentor and a good friend. I enjoyed discussing and debating

research ideas with him, and also benefited from his suggestions and guidance

as a senior student. I would also like to thank Xiaodong Wang, Gai Liu, Steve

Dai, and all other CSL students, whom I am fortunate to be friends with. I am

proud to be a member of this brilliant community.

I would like to thank my girlfriend Lin, for being caring and supportive for

my life and research. Her encouragement helped me push forward in times of

difficulties, and her warmth made me feel delighted every day.

Finally, I would like to express my deepest gratitude to my parents, Xin Chen

and Meihua Liu, for their unconditional love and support. They taught me to

be persistent and optimistic, and that hard work pays off, which got me this far

in my academic endeavor. They encouraged me to think independently, and

supported me no matter what decisions I have made in my life. I am proud to

have them as my parents, and I hope I have made them proud of me too.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 Background . 1
1.2 Design Complexity of Accelerators 3
1.3 Thesis Contributions and Organization 6

2 Memory Optimization Framework for Efficient Data Supply 9
2.1 Introduction . 9
2.2 Overview . 12

2.2.1 System Architecture . 12
2.2.2 High-Level Synthesis . 13
2.2.3 Impact of Memory Accesses on Accelerator Performance . 14
2.2.4 Data Preloading Framework 16

2.3 Prefetching . 18
2.4 Decoupled Access/Execute . 19

2.4.1 Access Unit . 23
2.4.2 Memory Units . 24
2.4.3 Execute Unit . 26
2.4.4 Deadlock Avoidance . 26
2.4.5 Customization of Memory Units 27
2.4.6 Automated DAE Accelerator Generation 28

2.5 Evaluation . 29
2.5.1 Methodology . 30
2.5.2 Experimental Setup . 31
2.5.3 Baseline Validation . 33
2.5.4 Performance Results . 34
2.5.5 Area, Power, and Energy Results 36
2.5.6 Design Space Exploration: Queue Size 42

3 Parallel Accelerator Framework 44
3.1 Introduction . 44
3.2 Computation Model for Dynamic Parallelism 48

3.2.1 Primitives . 48
3.2.2 Continuation Passing . 50
3.2.3 Scheduling the Computation 54
3.2.4 Function Calls . 56

vii

3.3 Accelerator Architecture . 56
3.3.1 FlexArch Tile and PE Architecture 58
3.3.2 LiteArch Tile and PE Architecture 64
3.3.3 Networks . 64
3.3.4 Memory Hierarchy . 65
3.3.5 CPU-Accelerator Interface 66

3.4 Design Methodology and Framework 67
3.4.1 Architectural Template . 67
3.4.2 Algorithm Description Format 68
3.4.3 Accelerator RTL Generation 69

3.5 Unified Framework for Parallel Accelerators and Software 71
3.5.1 CPPWD-TBB Library . 72
3.5.2 Programmability . 74

3.6 Evaluation . 75
3.6.1 Benchmarks . 76
3.6.2 Design Effort Comparison 79
3.6.3 Hardware Prototype on Today’s FPGA 81
3.6.4 Simulation Methodology 82
3.6.5 Performance Results . 84
3.6.6 Resource Utilization . 95
3.6.7 Power and Energy Efficiency 96
3.6.8 Cache Size Customization 97
3.6.9 Parallel Software with Unified Description 98

4 Predictive DVFS Framework for Energy Efficiency 101
4.1 Introduction . 101
4.2 Fine-grained DVFS for Hardware Accelerators 104

4.2.1 System Setup . 104
4.2.2 Tasks and Jobs . 104
4.2.3 Execution Time Variation 105
4.2.4 Current Approaches to DVFS 106

4.3 Predictive DVFS Framework for Hardware Accelerators 109
4.3.1 Source of Execution Time Variation 112
4.3.2 Features from Hardware Accelerators 113
4.3.3 Identifying and Obtaining Features 115
4.3.4 Prediction Model . 116
4.3.5 Hardware Slicing . 119
4.3.6 DVFS Model . 120
4.3.7 Predictor Operation Modes 121
4.3.8 Case Study . 122

4.4 Evaluation . 124
4.4.1 Methodology . 125
4.4.2 Experimental Setup . 126
4.4.3 Results for ASIC Accelerators 128

viii

4.4.4 Results for FPGA-based Accelerators 135
4.4.5 Extensions . 136

5 Related Work 139
5.1 High-Level Design Methodologies for Accelerators 139

5.1.1 High-Level Synthesis . 139
5.1.2 Hardware Generation Languages 142

5.2 Data Supply for Accelerators . 142
5.2.1 Data Supply for In-Core Accelerators 143
5.2.2 Memory Architecture for Standalone Accelerators 144
5.2.3 Memory Optimizations in High-Level Synthesis 145

5.3 Parallel Accelerators . 146
5.3.1 Task-Based Parallel Programming 146
5.3.2 Design Methodologies for Parallel Accelerators 147

5.4 Power Management for Systems with Time Constraints 148
5.4.1 Dynamic Voltage and Frequency Scaling 148
5.4.2 Execution Time Prediction 150

6 Conclusion 151
6.1 Summary . 151
6.2 Future Directions . 152

6.2.1 Compiler Support for Parallel Accelerators 152
6.2.2 Hybrid GPP-Accelerator Work-Stealing Architecture . . . 153

Bibliography 155

ix

LIST OF TABLES

2.1 Comparison of prefetching and DAE. 18
2.2 Summary of benchmarks. 31
2.3 Lines of code (LOC) comparison between the input to the frame-

work (C++ source code) and the generated Verilog code. Blank
lines and comments are not counted. 32

2.4 Experiment parameters. 32
2.5 Area and power of the baseline and DAE accelerators. The Abs

column shows absolute numbers, and the Norm column shows
results normalized to the baseline. 37

2.6 Impact of the queue size customization on area and perfor-
mance. Numbers are normalized to LQ16/SQ08. 43

3.1 Comparison between tile architectures. 58
3.2 Summary of task APIs. 68
3.3 Programmability comparison. M: Manual. A: Assisted by the

compiler. 74
3.4 Summary of benchmarks. PA: Parallelization Approach,

PF=parallel-for, FJ=fork-join, CP=continuation passing. R/N:
Recursive/Nested Parallelism. DP: Data-Dependent Paral-
lelism. MP: Memory Access Pattern. MI: Memory Intensity. . . . 77

3.5 Lines of code (LOC) comparison between Cilk Plus, CPPWD (the
input to the framework), and the generated Verilog code. Blank
lines and comments are not counted. 80

3.6 Platform configuration. 83
3.7 Scalability of Cilk Plus. The numbers are the speedup of a n-core

implementation over a single core implementation. 85
3.8 Scalability of the accelerators. The numbers are the speedup of a

n-PE implementation over a single PE implementation. 86
3.9 FlexArch accelerators resource utilization. Each tile consists of

four PEs and a cache. DSPs are shown in the number of DSP48
slices. BRAMs are shown in the number of RAM18’s (each
RAM36 counts as two RAM18’s). 94

3.10 LiteArch accelerators resource utilization. Each tile consists of
four PEs and a cache. 95

4.1 Summary of features in prediction model. 115
4.2 Variables in prediction model. 118
4.3 Summary of benchmarks. 127
4.4 Summary of workloads. 127
4.5 Summary of ASIC implementation results. 128

x

LIST OF FIGURES

1.1 Current accelerator design flow. 3

2.1 System architecture. 13
2.2 High-level synthesis flow. 14
2.3 The inner loop of sparse matrix vector multiplication. 15
2.4 Example schedule of an HLS SpMV accelerator with (a) ideal

memory (b) cache that has a miss when accessing vec. 15
2.5 Modified memory request message format. 19
2.6 Example schedule of the access part of a decoupled SpMV accel-

erator when there is a cache miss. 21
2.7 Architecture of access/execute decoupled accelerators. 22
2.8 Hardware structure of the memory unit. 24
2.9 High-level flow of decoupled access/execute accelerator gener-

ation. 28
2.10 Comparison of baseline accelerators performance with processors. 34
2.11 Performance of the proposed schemes normalized to the baseline

accelerator. 35
2.12 Area breakdown of DAE accelerators. The baseline area is

shown for comparison. 37
2.13 Power breakdown of DAE accelerators. The baseline power is

shown for comparison. 39
2.14 Energy comparison. 40
2.15 Energy breakdown of DAE accelerators. The baseline energy is

shown for comparison. If baseline energy is higher than DAE, it
is annotated with a number on top of the bar. 41

2.16 Performance comparison when varying load queue (LQ) sizes. . 42

3.1 Continuation passing for (a) sequential composition of tasks, (b)
fork-join. Downward arrows represent spawning tasks. Hori-
zontal arrows represent creating successor tasks. Dotted arrows
represent returning values (arguments). 51

3.2 Task graphs constructed using continuation passing. (a) Vector-
vector add. Node labels represent the start and end indices of
the sub-vectors. (b) Fibonacci. Each numbered node represents
the task for fib(n). Nodes labeled S represent the successor
(sum) tasks. (c) Dynamic programming. Solid arrows represent
spawns along which the continuation is passed. Result values
are passed along dotted arrows, with the final result sent to the
continuation k. 52

3.3 System architecture. The accelerator is shown in the shaded box. 57
3.4 FlexArch tile. 59
3.5 P-Store architecture. 62

xi

3.6 LiteArch tile. 64
3.7 Accelerator design flow. 67
3.8 C++-based worker description for Fibonacci. 70
3.9 Unified parallel accelerator and software flow. 71
3.10 Hardware and software implementation stacks. 73
3.11 Accelerators performance compared to parallel software on Zed-

board. 82
3.12 Normalized accelerator performance. The x-axis is the number

of workers (PEs). The y-axis is performance normalized to a sin-
gle OOO core. The horizontal bar indicates the performance of
an eight-core Cilk Plus implementation. 88

3.13 Execution time breakdown for FlexArch accelerators. Busy: PE
is actively processing a task. Wait: PE is waiting to steal a task.
Steal: PE is performing task stealing. 90

3.14 Maximum Task Queue and P-Store Occupancy for FlexArch ac-
celerators. The x-axis is the number of PEs. The y-axis is the
maximum number of occupied entries in any task queue or P-
store at any point of execution. 93

3.15 Normalized performance and energy efficiency. Energy effi-
ciency is the inverse of energy consumption. Both performance
and energy efficiency are normalized to the Cilk Plus implemen-
tation on 8 OOO cores. Points to the right of the vertical line have
better performance. Points above the horizontal line have bet-
ter energy efficiency. The diagonal line represents the iso-power
line. Points above the diagonal line have lower power. Points for
the same benchmark are linked. Note that both axes are in log
scale. 97

3.16 Performance when varying accelerator L1 cache size. 98
3.17 Performance comparison between parallel software implemen-

tations. 99

4.1 A sequence of jobs for a task. 105
4.2 Execution time of H.264 decoder for three video clips at 60fps.

Each point is one job (frame). 106
4.3 Actual execution time and execution time predicted by PID con-

troller for H.264. 108
4.4 Operation of predictive DVFS. 110
4.5 Accelerator with execution time prediction-based DVFS. 110
4.6 Execution time prediction flow. 111
4.7 Control-Datapath structure of an accelerator. 112
4.8 Example Finite State Machine in control unit. 113
4.9 Predictor operation modes. 122
4.10 Architecture of H.264 decoder. 122

xii

4.11 Errors of slice-based execution time prediction. The box extends
from the 25% to 75%, with a line at the median. The whiskers
show the range of the data. Outliers are shown as individual
points. 130

4.12 Normalized energy and deadline misses of different DVFS
schemes. 130

4.13 Area, energy and execution time overhead of prediction slice. . . 131
4.14 Normalized energy and deadline when overhead is removed. . . 132
4.15 Normalized energy and deadline misses with voltage boosting. . 133
4.16 Normalized energy and deadline misses when varying dead-

lines (averaged across all benchmarks). 134
4.17 Normalized energy and deadline misses for FPGA-based accel-

erators. 135
4.18 Area, energy and execution time overhead of prediction slice for

FPGA accelerators. 136
4.19 Comparison of prediction errors and deadline misses between

slicing at RTL and HLS level. 137
4.20 Comparison of area, energy and execution time overhead be-

tween slicing at RTL and HLS level. 138

xiii

CHAPTER 1

INTRODUCTION

As technology scaling slows down and only provides diminishing improve-

ments in general-purpose processor performance, computing systems are in-

creasingly relying on customized accelerators to meet the performance and en-

ergy efficiency requirements of emerging applications. For example, today’s

mobile SoCs rely on accelerators to perform compute-intensive tasks such as

multimedia processing and face recognition [10,89], and datacenters are starting

to deploy FPGA and ASIC accelerators for applications such as web search [87]

and machine learning [56]. This trend is expected to continue and future

systems will contain more specialized accelerators. However, the traditional

hardware-oriented accelerator design methodology is costly and inefficient be-

cause it requires significant manual effort in the design process. As a result,

only the most widely used applications today are able to amortize the high de-

velopment cost and benefit from accelerators. This development model is un-

sustainable in the future where a wide variety of accelerators are expected to

be designed for a large number of applications. To address this problem, the

development cost of accelerators must be drastically reduced, which calls for

more productive design methodologies that can create high-quality accelerators

with low manual effort.

1.1 Background

In the past five decades, the landscape of semiconductor technology scaling has

been largely governed by two laws: Moore’s law [71] and Dennard scaling [38].

Moore’s law states that the number of transistors that can be economically fit

1

onto an integrated circuit doubles with each technology generation. Dennard

scaling states that when voltages are scaled along with transistor dimensions,

metal-oxide semiconductor field-effect transistors (MOSFETs) can be made to

switch faster, and at the same time, consume less power. For decades, computer

architects have successfully harnessed architecture scaling, enabled by Moore’s

law, and frequency scaling, enabled by Dennard scaling, to design microproces-

sors with exponentially higher clock frequencies and new architecture features,

achieving tremendous growth in performance and energy efficiency.

Unfortunately, technology scaling is becoming increasingly more difficult

today. Dennard scaling started to break down around the mid-2000s, when it

became clear that scaling supply voltage proportionally with transistor feature

size is no longer feasible due to the difficulties in scaling the threshold voltage.

As a result, continuing to scale transistor frequency would lead to drastically

increased power density, which is impractical due to cooling constraints. This

is known as the power wall, which effectively ended the exponential increase of

microprocessor clock frequency, and prompted the industry to shift to multi-

core architectures. Moore’s law has significantly slowed down too: as transistor

feature sizes approach physical limits, developing new technology generations

is becoming increasingly difficult and costly. It is likely that in the near future,

we will enter an era without Moore’s law or Dennard scaling. As a result, con-

tinuing to scale the number of cores on a chip is unsustainable without Moore’s

law. To make things worse, not all cores can be powered on at the same time

due to power limits [39]. As a result, computer architects have to turn to other

approaches to continue improving performance and energy efficiency. Among

many candidates, accelerators are emerging as a promising solution. Accelera-

tors trade off generality for efficiency by specializing the hardware for a reduced

2

NetlistSystem
RTL

Bitstream

Layout Chip

Architecture
Design

Hardware
Design

Logic
Synthesis

Algorithm Architecture RTL

Integration

Algorithm Architecture RTL

Place
Route

Fabrication

•
•
•

•
•
•

ASIC

FPGA

Figure 1.1: Current accelerator design flow.

set of applications. Accelerators have been shown to deliver orders of mag-

nitude better performance and energy efficiency compared to general-purpose

processors [24, 56], and offer a promising way going forward in the absence of

technology scaling benefits.

1.2 Design Complexity of Accelerators

Accelerators achieve efficiency through specialization. By focusing on a reduced

set of applications (often just one), the data path and memory circuitry of an ac-

celerator can be specialized and optimized, thus achieving better performance

and/or energy efficiency. It has been shown that many of the optimizations in

accelerators are algorithm-specific [50], which means that different applications

will need to use different accelerators to in order to achieve the best efficiency.

For this reason, we focus on accelerators that are custom designed for their tar-

get applications in this thesis. Future systems need to use an increasing number

of accelerators for various applications in order to sustain the growth in perfor-

mance and energy efficiency. This trend can already be seen in the mobile space,

where each generation of SoCs integrates more accelerators [27, 102].

3

Unfortunately, an increasing number of accelerators creates a design com-

plexity problem. Most of today’s accelerators are designed using a low-level

hardware design methodology that involves significant manual effort and in-

curs high non-recurring engineering (NRE) costs per accelerator. As a result,

the design complexity and cost grows quickly with the number of accelerators,

which limits the number of accelerators that can be economically designed, and

thus limiting the number of applications that can be accelerated. We call this

problem the design complexity wall. Just as the power wall ended microproces-

sor’s frequency increase, the design complexity wall may end the growth of

accelerators too. Figure 1.1 shows the major steps of today’s accelerator design

flow. For each algorithm that needs to be accelerated, designers first conceive

the architecture of the accelerator, and then perform hardware design by writ-

ing register-transfer-level (RTL) descriptions of the accelerators using hardware

description languages such as Verilog or VHDL, or using software tools to gen-

erate the RTL. Then the designers integrate the RTL descriptions of the accel-

erators into a system which may contain other components such as general-

purpose processor cores and memory controllers, and then run the standard

synthesis, place and route tools to obtain the physical layout for ASIC imple-

mentation, or the bitstream for FPGA implementation. During each step of the

process, designers also need to test the accelerators and repeat the step until

the design meets the performance and functionality specifications. The poor

productivity of this flow, especially the process of converting each algorithm to

efficient hardware architectures and RTL, is a major contributor to the design

complexity problem. Studies have shown that designing accelerators using this

flow often takes months, which can be an order of magnitude longer compared

to software implementations [36, 65, 109]. We observe that one primary reason

4

for the low productivity is the high manual effort involved in the design pro-

cess. Today’s accelerator design methodologies require designers to manually

describe the low-level details of an accelerator’s operations statically at design

time. In contrast, modern computer architectures and system software support

many dynamic features that automatically adapts to application behavior at

runtime for improved programmer productivity, performance, and/or energy

efficiency. For example, dynamic scheduling, automatically managed memory

hierarchy, and data prefetching free programmers from needing to manually

manage instruction scheduling and data movements. Power management tech-

niques such as dynamic frequency and voltage scaling (DVFS) adaptively adjust

to application behavior to achieve energy savings. Task-based parallel program-

ming frameworks provide abstractions for easily expressing diverse types of

parallelism, and adaptively schedules the computation to allows programmers

to write efficient parallel programs without needing to worry about low-level

details.

Solving the design complexity problem would require hardware design to

be much more productive, and more like modern software design. Just like

high-level languages, reusable libraries, and optimizing compilers freed soft-

ware programmers from needing to write low-level assembly code and dras-

tically improved productivity, today’s accelerator design also needs high-level

abstractions, reusable architectures, and automated design frameworks in order to

be productive and efficient. In addition, just as optimizing compilers needed

to generate code with comparable quality to hand-written assembly, high-level

accelerator design frameworks also need to generate high-quality hardware in

order to be widely used.

5

1.3 Thesis Contributions and Organization

This thesis proposes to address the design complexity problem with archi-

tectural frameworks that combine novel accelerator architectures with automated

design and optimization frameworks to enable designing high-performance and

energy-efficient accelerators with minimal manual effort. The accelerator ar-

chitectures provide high-level abstractions and reusable architecture templates

that offer dynamic and adaptive features which can be applied to the design

of high-quality accelerators for a wide range of applications. The automated

frameworks include a structured HLS design methodology that combines the

benefits of high-level synthesis and hardware generation techniques to enable

designing accelerators with high productivity while retaining the flexibility of

quality advantages of RTL designs. In addition, the frameworks leverage pro-

gram analysis and compiler optimization techniques to enable generating op-

timized accelerators with novel architectural features. Specifically, the thesis

proposes three such architectural frameworks to address concrete challenges in

today’s accelerator design, and achieve reduced design complexity, improved

performance, and better energy efficiency.

1. The thesis proposes an architectural framework for automatically generat-

ing accelerators that can effectively tolerate long, variable memory laten-

cies, which improves performance and reduces design effort by removing

the need to manually create data preloading logic [23]. The framework

leverages architecture mechanisms such as memory prefetching and ac-

cess/execute decoupling, as well as compiler analysis to generate acceler-

ators that can intelligently preload data needed in the future from the main

memory. The framework uses program slicing and architecture templates

6

together with high-level synthesis to enable generating fully synthesizable

accelerators automatically from high-level languages.

2. The thesis proposes an architectural framework for building parallel ac-

celerators that leverages concepts from task-based parallel programming,

which enables programmers to quickly create high-performance accelera-

tors using familiar parallel programming paradigms, without needing to

know low-level hardware design knowledge [22]. The framework uses

a computation model that supports dynamic parallelism in addition to

static parallelism, and includes a flexible architecture that supports dy-

namic scheduling to enable mapping a wide range of parallel applications

to accelerators and achieve good performance. The framework includes

an architecture template and uses hardware generation to automatically

generate accelerators with the proposed architecture from high-level de-

scriptions. In addition, the thesis proposes a unified language that can be

mapped to both software and hardware, enabling programmers to create

parallel software and parallel accelerators in a unified framework.

3. The thesis proposes an architectural framework that enables accelera-

tors to perform intelligent dynamic voltage and frequency scaling (DVFS)

to achieve good energy-efficiency for interactive and real-time applica-

tions [21]. The framework combines program analysis and machine learn-

ing to train predictors that can accurately predict the computation time

needed for each job, and adjust the DVFS levels to reduce the energy con-

sumption. The framework automatically generates the prediction hard-

ware from the RTL description of an accelerator.

The rest of the thesis is organized as follows. Chapter 2 describes the frame-

work for generating accelerators with efficient data supply. Chapter 3 describes

7

the framework for generating parallel accelerators that support dynamic paral-

lelism, and the unified language for describing both parallel hardware and soft-

ware. Chapter 4 describes the framework for generating accelerators that can

perform intelligent dynamic voltage and frequency scaling. Finally, Chapter 5

summarizes related work, and Chapter 6 concludes the thesis and discusses fu-

ture directions.

8

CHAPTER 2

MEMORY OPTIMIZATION FRAMEWORK FOR EFFICIENT DATA

SUPPLY

2.1 Introduction

This chapter proposes a framework to automatically optimize hardware accel-

erators and enable them to effectively hide long, variable memory latencies

of an SoC memory hierarchy by preloading data in parallel to computations.

The effective data preloading is achieved through hardware prefetching and

design transformations to decouple memory accesses and computations. This

framework is generally applicable to accelerator designs that are attached to the

memory bus or the last-level cache and have their own memory access logic.

This accelerator design style is widely adopted both in the industry and the re-

search community [21, 24, 32, 66, 89, 113]. While the techniques proposed in this

framework can be applied to any accelerator in general, the framework is de-

signed to target accelerators that are generated using High-Level Synthesis (HLS).

HLS compiles high-level languages such as C/C++ [20, 114], OpenCL [54], or

domain-specific languages [11, 58] into RTL. HLS is becoming an increasingly

popular approach to design accelerators because it raises the level of abstrac-

tion of hardware design, and is used in both industry designs [42] as well as

hardware accelerator research [92, 98].

Unfortunately, even with HLS, data supply from memory often needs to be

carefully coordinated with manual optimizations in order to achieve high per-

formance in hardware accelerators. For example, today’s HLS tools assume

a fixed latency of all memory accesses, and rely on accelerator designers to

9

write explicit logic to manage the communication between DRAM and on-chip

scratchpad memory. This approach requires serious manual design efforts, and

the resulting management logic is accelerator-specific and not reusable for other

designs. Alternatively, designers can use caches to ease communication man-

agement given locality in memory accesses [8]. However, we found that caches

are not sufficient to provide high performance without carefully orchestrated

data supply. Unlike modern processors with expensive latency-hiding mecha-

nisms such as dynamic scheduling, typical accelerators rely on a static pipeline

schedule and a cache miss stalls the entire pipeline.

This framework proposed in this chapter aims to enable efficient data supply

for HLS-based accelerators without manual efforts necessary today. To achieve

this goal, we remove inefficiencies in today’s cache-based accelerators in two

ways. First, we use a prefetch engine to remove cache misses for easy-to-predict

memory accesses. The prefetch engine is general and common across accel-

erators. For example, we use a stride prefetcher in our experiments. Second,

to handle complex memory access patterns, we propose to decouple memory

access logic of an accelerator from the main computation pipeline. For many

accelerators, memory addresses of data that need to be accessed are often in-

dependent of main computations and can be computed ahead to fetch data in

parallel to the main computation. Thus, by decoupling the memory access logic

from the computation pipeline, it can run ahead to fetch and buffer the data

to be consumed by the computation pipeline. As long as the access logic runs

sufficiently ahead, it can absorb cache misses without stalling the computation

pipeline, this hiding memory latency. In fact, data supply in manually opti-

mized accelerators relies on such decoupling and preloading. In this chapter,

we show that this decoupling can be done automatically using program slicing

10

on a high-level accelerator design. The framework can be applied to existing

high-level synthesis tools with minimal manual efforts.

While prefetching and access/execute decoupling have been studied for pro-

cessing cores, we found that applying them to accelerators introduce new chal-

lenges. For prefetching, unlike processing cores, accelerators do not have pro-

gram counters (PCs) that can be used to easily distinguish different sources of

memory accesses. In order to apply traditional prefetch algorithms, we aug-

ment our accelerator generation process to automatically add additional tags.

We also found that simply decoupling memory accesses from main com-

putations alone does not significantly improve the performance of acceler-

ators unless independent accesses can be overlapped. The decoupled ac-

cess/execute (DAE) architecture on processing cores rely on expensive out-

of-order or dataflow execution to perform multiple accesses in parallel. For

hardware accelerators with static pipelines, we show that simple decoupling

of memory accesses through dedicated forwarding logic is sufficient to achieve

good performance with minimal overhead in most cases.

In order to evaluate the effectiveness of the proposed framework, we ap-

plied prefetching and access/execute decoupling to eight HLS-based accelera-

tors. The experimental results show that the proposed framework can be ap-

plied to accelerators with minimal manual efforts and significantly improve

the performance compared to the baseline accelerator. The DAE architecture

alone improved performance by 1.89x on average while the average speedup

increased to 2.28x when prefetching was added. The optimizations also reduce

energy consumption for many accelerators, by 15% on average.

11

The rest of the chapter is organized as follows. Section 2.2 provides an

overview of the accelerator data supply problem and briefly discusses the pro-

posed solution. Section 2.3 describes prefetching as an approach to improve

accelerator data supply and a technique to enable efficient prefetching for hard-

ware accelerators. Section 2.4 describes the architecture of access/execute de-

coupled accelerators as well as a framework to automatically generate them

from a high-level description. Section 2.5 discusses our evaluation methodol-

ogy, experimental setup, and evaluation results.

2.2 Overview

2.2.1 System Architecture

Figure 2.1 shows the high-level system architecture that we assume in this chap-

ter. The system is a heterogeneous SoC that consists of general-purpose process-

ing engines such as processor cores and GPGPUs as well as a large number of

accelerators. We consider stand-alone accelerators that are loosely-coupled to

the cores and have their own memory interfaces to access main memory. A

processing core configures and initiates an accelerator, then the accelerator per-

forms its computation without intervention from the core. Each accelerator has

its own compute pipeline and accesses memory through an on-chip cache.

12

Shared LLC

Interconnect

Memory Interface

● ● ●
Core

$ GPGPU

Core

$

Accelerators

$

Compute
Pipeline

Figure 2.1: System architecture.

2.2.2 High-Level Synthesis

In this work, we target accelerators that are generated using High-Level Syn-

thesis (HLS). Figure 2.2 shows a typical HLS flow that automatically transforms

a functional description of the accelerator written in a high-level language such

as C or C++ into a register-transfer level (RTL) description. To achieve this, HLS

tools first transform source code into control data flow graphs (CDFG), and then

perform allocation, scheduling, and binding to generate the final RTL. HLS tools

usually pipeline the computation in order to achieve high performance. The

pipeline is generated using a static schedule, where each operation is placed in

a fixed slot determined at compile time. This approach works well if all func-

tional units and memory operations have a short fixed latency. For operations

with an uncertain latency, the HLS tool has to use a best guess for scheduling.

For example, cache accesses are usually assumed to be a hit in order to gener-

ate a compact pipeline schedule. Then, the pipeline is stalled at run-time if an

access turns out to be a cache miss.

13

if (a < b) {
 g = c + d;
 h = e * f;
 x = g * h;
} else {
 ...
}

+C
on

tr
ol

 F
S

M

Registers

x

Datapath

BB0

BB1 BB2

BB3

C/C++

Compilation

Transformation

Allocation

Scheduling Binding

RTL Generation

+ x

x

Control Data
Flow Graph

(CDFG)

FSM with datapath

Figure 2.2: High-level synthesis flow.

2.2.3 Impact of Memory Accesses on Accelerator Performance

We use an example to illustrate how a long memory access latency on a cache

miss can impact accelerator performance. The code in Figure 2.3 shows the inner

loop of a sparse matrix vector multiplication (SpMV) accelerator. Note that the

access to the vec array is an indirect memory access that has an irregular access

pattern, and is likely to miss in the cache.

An example pipeline schedule for the corresponding accelerator is shown

in Figure 2.4. The pipeline has an initiation interval (II) of one, that is, a new

iteration can begin execution every clock cycle in the ideal case, as illustrated in

Figure 2.4(a). The three load operations in each iteration are to val, cols, and

14

1 for (j = begin; j < end; j++) {
2 #pragma HLS pipeline
3 Si = val[j] * vec[cols[j]];
4 sum = sum + Si;
5 }

Figure 2.3: The inner loop of sparse matrix vector multiplication.

LD
LD
LD

MUL

ADD

LD
LD
LD

MUL

ADD

LD
LD
LD

MUL

ADD

LD
LD
LD

MUL

ADD

LD
LD
LD

MUL

ADD

Time

LD
LD
LD

LD
LD LD

MUL

ADD

LD

MUL

ADD

LD
LD

MUL

ADD

LD
LD
LD

MUL

ADD

Stall

(a) (b)

miss

Figure 2.4: Example schedule of an HLS SpMV accelerator with (a) ideal
memory (b) cache that has a miss when accessing vec.

vec, respectively. Figure 2.4(b) shows an actual pipeline operation when access-

ing vec in the first iteration incurs a cache miss. Since the schedule is static, the

entire pipeline has to stall until the miss is resolved, even though the memory

accesses of later iterations might have been hits. The stall due to a long memory

access latency can have a large impact on the accelerator’s performance. For

example, in Figure 2.4(b), although only one out of four iterations has a cache

miss, the effective initiation interval for the four iterations is increased from one

to two, essentially lowering the throughput by half. The impact can be even

larger for accelerators with deeper pipelines where one cache miss can poten-

15

tially stall many more operations than what is shown in the example.

Our experimental results on a set of HLS-based hardware accelerators sug-

gest that the performance loss due to long memory accesses is significant. There

exists a large performance gap between accelerators with ideal memory (1-

cycle) and a realistic cache-based memory hierarchy. This work aims to bridge

this gap by developing techniques to automatically preload data for accelera-

tors. An ideal preloading scheme would effectively eliminate cache misses, and

allow the pipeline to run at the full throughput possible with the ideal memory.

2.2.4 Data Preloading Framework

There are a few challenges in developing a data preloading scheme to enable

efficient data supply for accelerators. First, the scheme needs to accurately pre-

dict future data needs of an accelerator so that data can be preloaded. Second,

the prediction needs to be early enough to hide memory latency. Third, the pre-

diction and memory accesses need to be decoupled from computation so that

accesses and computation can happen in parallel. Fourth, all the above need to

be performed automatically with minimal manual efforts.

In this work, we use two data preloading techniques to hide long memory

accesses: (1) prefetching and (2) access/execute decoupling. These two tech-

niques have complementary characteristics, and can both be applied with min-

imal manual efforts.

Hardware prefetchers predict likely memory addresses to be accessed in the

future by observing a sequence of memory accesses at run-time. For exam-

16

ple, a stride prefetcher is widely used to detect and preload streaming mem-

ory accesses with a fixed stride. In our example, simple strided accesses such

as val[j] and cols[j] can easily be detected and preloaded by a hardware

prefetch engine. Moreover, the prefetch engine is inherently decoupled from ac-

celerators and can perform multiple prefetching operations in parallel. On the

other hand, on-line prefetching often cannot accurately predict complex mem-

ory access patterns such as the indirect accesses (vec[cols[j]]) in our exam-

ple.

For difficult-to-predict memory accesses, we use decoupled access/execute

(DAE) architecture. In this approach, we observe that program slicing tech-

niques can be used to automatically separate parts that are necessary to com-

pute addresses for memory accesses (access part) from the rest that performs

main computations (execute part). Then, the access part can run ahead of the

execute part to preload data. In a sense, the DAE approach provides a per-

fectly accurate predictor for future memory accesses. However, decoupling

and providing early predictions can be more difficult in the DAE architecture

compared to prefetching. In DAE, address generations must be exact (binding)

unlike prefetching whose predictions may be incorrect (non-binding). Also, in

certain cases, it may be difficult to decouple the access and execute parts due to

dependencies. Table 2.1 summarizes the characteristics of prefetching and DAE

in terms exactness in address generation, accuracy, and timeliness.

Our experiments show that prefetching and DAE can complement each

other. DAE enables accurate preloading of memory addresses when possible.

Prefetching provides speculative preloading for simple access patterns when

DAE cannot generate exact addresses early enough.

17

Table 2.1: Comparison of prefetching and DAE.

Binding Accuracy Timeliness

Prefetch No Good when regular Good

DAE Yes Good Depends

2.3 Prefetching

As we mentioned in the previous section, hardware prefetchers observe the

memory address stream and predict the addresses that are likely to be refer-

enced in the future. In most cases, just looking at a global address stream is

not enough to make good predictions, as the global stream is usually a mix-

ture of multiple data streams with different strides as well as irregular accesses,

making it difficult to learn the access pattern and make predictions. Thus, most

hardware prefetchers perform stream localization to separate a global address

stream into multiple local address streams that can be learned and predicted ef-

fectively, and to exclude irregular accesses with poor predictability. Since most

hardware prefetchers are designed for general-purpose processing cores, they

often use the program counter (PC) of load and store instructions as a hint for

stream localization [13, 75], with the intuition that different streams come from

different instructions in the program. In addition, the PC is also used for other

purposes such as spatial correlation prediction [103] to improve the accuracy

of prefetching. Hardware accelerators, on the other hand, usually do not have

a PC. Thus, traditional hardware prefetchers that rely on a PC would not be

effective when used naively with hardware accelerators.

We observe that for hardware prefetchers, the fundamental role of a PC is to

18

type addr datalen

type addr datalentag

Original Memory Request Message Format

Modified Memory Request Message Format

Figure 2.5: Modified memory request message format.

indicate which memory instruction in a program a memory access comes from.

If we replace the PC with a unique identifier for each memory instruction, the

prefetcher would work equally well as the identifier provides the same amount

of information for stream localization. Thus, we propose to tag each memory

access operation in a hardware accelerator with a unique identifier that is sent to

a prefetch engine in place of the PC for each memory access. In our implemen-

tation, we modified the memory request message format of the accelerators to

include a tag field, as shown in Figure 2.5. To generate the tags, we add an extra

pass to the HLS compiler frontend, which traverses all basic blocks in the code,

and tags each memory operation with a unique identifier that emulates a PC.

The pseudo-code of the pass is shown in Algorithm 1. Using the tag, features

such as PC-based stream localization would work correctly, and the hardware

prefetcher is able to effectively prefetch memory addresses of hardware acceler-

ators.

2.4 Decoupled Access/Execute

While hardware prefetchers are effective in prefetching regular memory ac-

cesses, they work less well for complex access patterns or short streams that do

19

Algorithm 1: Generate tags for memory accesses

1: procedure GENERATETAGS

2: t← 0

3: for all basic blocks do

4: for all operations in the basic block do

5: if op.type = load or op.type = store then

6: op.tag← t

7: t← t + 4

8: end if

9: end for

10: end for

11: end procedure

not trigger hardware prefetching. The fundamental limit of hardware prefetch-

ers is the lack of semantic information about the computation. Previous stud-

ies have proposed various techniques to employ semantic information to en-

able more accurate prefetching for software programs. For example, software

prefetching [72] allows programmers or compilers to embed prefetch instruc-

tions into the code, which provide hints to the hardware about the addresses to

be accessed in the future. Helper thread [35] and runahead execution [73] pre-

execute a part of the program or a specially crafted program slice to bring data

into the cache. All these techniques rely on the assumption that memory ad-

dresses can often be computed well ahead of when the data are needed. Decou-

pled access/execute (DAE) [101] materializes this assumption to a full extent by

allowing the memory access part, where memory addresses are computed and

data accesses are performed, to run ahead of the execute part, where data are

20

Time
missLD

LD
LD

LD
LD LD

LD LD
LD

LD
LD
LD

Stall

Figure 2.6: Example schedule of the access part of a decoupled SpMV ac-
celerator when there is a cache miss.

consumed. In a typical access/execute decoupled architecture, the access part

manages all communications with the memory and supplies data to the execute

part; the execute part does not have a memory interface.

A key requirement for achieving performance improvements with DAE is

that the access part in the decoupled architecture must run faster than the non-

decoupled architecture, otherwise the performance is limited by the access part.

However, in highly pipelined accelerators, this is unlikely true. Figure 2.6 shows

an example schedule of the access part of a decoupled SpMV accelerator where

the same miss occurs as in the non-decoupled version shown in Figure 2.4.

The miss has the same performance impact on the access part as in the non-

decoupled version. Thus, simply dividing the accelerator pipeline into access

and execute parts is unlikely to improve performance significantly when the

access part has the same rigid pipeline that cannot tolerate memory latencies.

Allowing the access pipeline to tolerate cache misses is a key challenge in de-

signing the DAE accelerator architecture.

Figure 2.7 shows the architecture of the proposed access/execute decoupled

21

Access Unit

Execute
Unit

Cache/Mem Interface

Arbiter/XBar

Address
Generation

Logic

Mem
Unit

Mem
Unit

Figure 2.7: Architecture of access/execute decoupled accelerators.

accelerator, consisting of the Access Unit, Execute Unit, Memory Units, and de-

coupling queues. A visible difference from classic access/execute decoupled ar-

chitectures is the added memory units, which is a proxy through which memory

accesses are performed. Later we will show that this is necessary for tolerating

the memory latency. The access unit generates memory addresses and request

types, and then sends them to the memory unit to be forwarded to memory.

For load operations, once responses come back, the memory unit enqueues the

data into the Load Queue (LQ) to be read by the execute unit. For store op-

erations, the memory unit combines the address from the access unit and data

from the execute unit, and then sends the request to memory. An access/execute

decoupled accelerator can have multiple memory units, which share the cache

interface.

22

2.4.1 Access Unit

In a simple DAE accelerator implementation, the access unit is responsible

for address generation, handling memory requests/responses, and forward-

ing data to the execute unit, all in a single static schedule generated by the

HLS tool. Among these tasks, address generation and sending out memory

requests usually have a fixed latency and thus would work well under the static

schedule. Handling memory responses and forwarding data, however, have

variable latencies depending on when the response comes back from memory.

This has two implications. First, they cannot be executed efficiently under the

static schedule generated by HLS. Second, they may stall address generation

and sending out requests for other independent accesses. To address this prob-

lem, we propose to decouple memory response handling and data forwarding

from address generation and sending out requests. Specifically, we delegate

these tasks to the memory unit, which handles them independently, decoupled

from the access unit.

The result of a load operation can either be used by the execute unit for data

computation or by the access unit for address computation. In the first case, the

access unit is not involved in handling the load result. This type of load opera-

tions are called terminal loads [49]. In the second case, however, the access unit

would need to wait for the load result and thus its pipeline could be stalled if

the load is a miss. One way to enable the access unit to continue to perform

independent operations is to employ an out-of-order core as the access unit, or

use dataflow execution for memory accesses [51]. Though these approaches can

achieve higher performance, we choose not to employ them because we observe

that the load dependency chains in many accelerators are short. In fact, a large

23

Load Queue
to ExeU

Mem
Unit

Dep
Check

memreq memresp

Store Addr

Store Data
from ExeU

Load Addr

Store
Addr

Queue

Store
Data

Queue

Fwd
Data

Queue

Load Data to AccU

Fwd
Data

Figure 2.8: Hardware structure of the memory unit.

portion of load operations are terminal loads. This is because many accelerators

mostly perform parallel operations, instead of serial operations through mem-

ory such as pointer chasing. Decoupling just terminal loads, i.e. the last node of

a load dependency chain, provides most of the benefits with a low cost. Hence,

our architecture would work reasonably well for short memory dependency

chains, and we trade off the ability to handle long chains for low hardware

complexity.

2.4.2 Memory Units

Figure 2.8 shows the hardware structure of the memory unit. It mainly consists

of load queue, store queue, forward data queue, dependency checking logic,

and memory request/response routing logic.

The Store Address Queue (SAQ) contains store addresses that are not yet

24

sent to memory, either because the store data have not been computed yet, or

because it is waiting for access to the memory interface. The Store Data Queue

(SDQ) buffers store data from the execute unit. The head entries of SAQ and

SDQ are paired to form a store request to be sent to memory.

Each load request from the access unit contains a dest field indicating

whether the result is used by the access unit or the execute unit. The field is

kept in the corresponding response to the request. When the memory unit re-

ceives a load request, it checks whether there is an entry in the SAQ matching

the store address. If there is a match, the load waits until the corresponding

entry in the SDQ is valid, and data is forwarded from the SDQ to either the For-

ward Data Queue (FwdQ) or the access unit, depending on whether the load

operation is a terminal load or not. If there is no match, the load request is

sent to the memory. The load and store requests share the memory port. Load

requests are given priority over stores to reduce load latency.

The Load Queue (LQ) contains data to be forwarded to the execute unit.

When a load response returns from memory, its dest field is inspected to route

the response data to the LQ, the access unit, or both. Because the execute unit

consumes data from memory in a program order, the LQ entries are reserved

and maintained in the request order. For example, responses from the memory

and the Forward Data Queue are placed in the LQ in the program order. The

memory unit supports multiple in-flight requests. If the cache returns responses

out-of-order, the LQ is used to reorder and return them in order.

25

2.4.3 Execute Unit

The execute unit is generated using HLS from the execute slice, and mainly

consists of the data computation pipeline.

2.4.4 Deadlock Avoidance

There exist two possible deadlock situations in the proposed access/execute de-

coupled architecture. Here we describe them and discuss how to prevent them.

Pipelining-Induced Deadlocks: A deadlock may occur when accelerator

pipeline interacts with a store queue of insufficient size. Suppose the exe-

cute unit pipeline has latency L and initiation interval I I, it needs to consume

N = dL/I Ie inputs before producing the first output. If the store queue size

is less than N, it may fill up and block the access pipeline. Because the exe-

cute pipeline depends on the access pipeline for data supply, it also blocks and

the accelerator deadlocks. The deadlock occurs because pipelines generated by

most HLS tools do not support flushing by default. That is, a blocking oper-

ation stalls the entire pipeline, not just subsequent iterations. This restriction

enables HLS tools to generate simple pipelines without complex control logic

and buffering, but causes deadlocks in this situation.

Pipeline synthesis techniques that support flushing [37] can be used to avoid

this deadlock. If the HLS tool does not support flushing, another approach is

to ensure that size of the SAQ is larger than N = dL/I Ie, so that it would not

become full before the execute pipeline produces the first output. Often the

SAQ size required for performance reasons is already greater than N, then no

26

additional changes are needed in this case.

Deadlock Due to Full Load/Store Queues: A deadlock can occur when the

queues are full and form a circular dependency. For example, a load response

returns from memory when the load queue and store queue are both full, and

the memory system cannot accept another request because it has reached the

maximum number of in-flight requests. In this situation, the load queue cannot

be drained because the execute unit is stalled trying to write to the full store

queue, which is waiting for the memory system, which in turn is waiting for

the load queue. This creates a circular dependency, causing a deadlock. This

deadlock can be avoided by ensuring that not all queues can become full at the

same time. Specifically, we track the number of in-flight load operations and

free entries in the load queue, and delay issuing a load if the response would

cause the load queue to become full.

2.4.5 Customization of Memory Units

The memory unit design described in Section 2.4.2 can be customized to fit the

needs of a particular accelerator, providing just enough resources and features

but not more. The sizes of various queue structures can be adjusted to fit the

accelerator’s memory characteristics. For example, if the accelerator rarely per-

forms stores, sizing down the store queue would help save area and energy. If a

certain feature is unused by an accelerator or does not help too much, it can be

removed. For example, if a memory port is read-only, the memory unit can be

made much simpler by removing any store-related features such as store queue

and dependency checking logic. As another example, store to load forwarding

27

accel.c

Architectural
Template

HW
Generation

access.v execute.v

Access/Execute
Decoupled Accel

slic
ing slicing

parameters

access.c execute.c

HLS HLS

Figure 2.9: High-level flow of decoupled access/execute accelerator gen-
eration.

can be removed if the accelerator does not need it.

2.4.6 Automated DAE Accelerator Generation

Figure 2.9 shows the high-level flow used by the framework for automatically

generating accelerators with access/execute decoupling. Starting from a single

source code written in a high-level language, the framework uses program slic-

ing [110], which is built in modern optimizing compilers, to generate access and

execute slices. To generate the access slice, the program slicing algorithm back-

tracks from loads and stores in the Control Data Flow Graph (CDFG) of an ac-

celerator and keeps all necessary operations for computing memory addresses,

while removing others. To generate the execute slice, the algorithm backtracks

28

from stores and finds all operations needed to compute store values. The slicing

process also performs transformations to enable decoupling. In the access slice,

stores are transformed into store addr operations, which only have address

but not data. Terminal loads are identified as loads that are not in the back slice

of address calculations, and are transformed into load fwd operations which

indicate that the result should be consumed by the execute slice. In the execute

slice, all loads and stores are replaced with queue reads and writes. The frame-

work then synthesizes the resulting access and execute slices into Verilog RTL

using HLS.

The framework implements the decoupled accelerator architecture shown

Figure 2.7 in as an architectural template written in a hardware generation lan-

guage PyMTL [69]. The template includes RTL implementations of the compo-

nents such as memory unit, queue structures, arbiters, and memory crossbars.

The architectural template is designed to be fully configurable to allow cus-

tomization of the modules as described in Section 2.4.5. For example, the sizes

of the load and store queues, as well the architecture features can be configured.

To generate the final RTL of the accelerator, the framework elaborates the

template with the parameters specified by the designer, and combines it with

the access and execute slices to output the RTL of the access/execute decoupled

accelerator.

2.5 Evaluation

In this section, we present the evaluation results for the proposed data supply

framework for accelerators. We first discuss our evaluation methodology and

29

experimental setup. Then, we show the performance, area, and energy results.

2.5.1 Methodology

We use an integrated evaluation methodology that combines cycle-level,

register-transfer-level, and gate-level modeling.

Cycle-level modeling is used to model the performance of the system com-

ponents including caches, interconnect, memory controller, and main memory.

We use gem5 [15] for this purpose.

Register-transfer-level modeling is used to accurately model the perfor-

mance of hardware accelerators. Vivado HLS 2015.2 is used to synthesize a

C-based description of the accelerators into Verilog. For DAE accelerators, RTL

of the memory unit and queue structures are generated from the architectural

template. Verilator [3] is used for RTL simulation. We integrated Verilator with

gem5 for co-simulation of accelerators and system components.

Gate-level modeling is used to build accurate area and energy models for

the accelerators. We synthesized, placed and routed each accelerator using Syn-

opsys Design Compiler and IC Compiler with the TSMC 65nm standard cell

library to obtain area numbers. Design Compiler automatically inserts clock

gating logic for all designs. Power and energy analysis were performed using

Synopsys PrimeTime PX with the switch activity factors obtained from simula-

tions of the place and routed netlist.

30

Table 2.2: Summary of benchmarks.

Benchmark Description

bbgemm Blocked matrix multiplication

bfsbulk Breadth-first search

gemm Dense matrix multiplication

mdknn Molecular dynamics (K-nearest neighbor)

nw Needleman-Wunsch algorithm

spmvcrs Sparse matrix vector multiplication

stencil2d 2D stencil computation

viterbi Viterbi algorithm

2.5.2 Experimental Setup

We use a set of eight benchmark accelerators adapted from MachSuite [92] in

our experiments. Table 2.2 summarizes the accelerators. For each benchmark,

we use the framework to generate the Verilog RTL of the accelerator with DAE

and prefetching from a C++ source code. Each accelerator has a private L1 cache

connected to the DRAM controller through the system bus. For prefetching, we

use a stride hardware prefetcher. Table 2.3 compares the lines of code between

the C++ source code and the generated Verilog RTL. The results demonstrate

that the framework is able to generate high-quality accelerators from a small

amount of high-level code.

Table 2.4 shows the detailed experiment parameters. We compare the fol-

lowing schemes:

1. Baseline is the original accelerator without prefetching or DAE.

31

Table 2.3: Lines of code (LOC) comparison between the input to the frame-
work (C++ source code) and the generated Verilog code. Blank
lines and comments are not counted.

Benchmark LOC (C++) LOC (Verilog) Ratio

bbgemm 74 6,494 87.8

bfsbulk 74 3,148 42.5

gemm 75 6,246 83.3

mdknn 96 7,601 79.2

nw 133 9,080 68.3

spmvcrs 89 6,640 74.6

stencil2d 81 7,095 87.6

viterbi 89 7,053 79.2

Table 2.4: Experiment parameters.

Technology 65nm

Frequency 500MHz

DAE MemUnit 16-entry LQ, 8-entry SQ

Cache 16KB / 2-way / 32B line size / 1 cycle latency / 4 MSHRs

Prefecher Stride prefetcher, degree=8

DRAM Single-channel 32-bit LPDDR3-1600, 6.4GB/s BW

2. Stride has the stride prefetcher enabled but not DAE. The memory ac-

cesses are tagged to facilitate prefetching.

3. DAE is the access/execute decoupled implementation, but without the

stride prefetcher.

4. DAE+stride adds stride prefetching to DAE.

32

2.5.3 Baseline Validation

HLS-based accelerators have a large design space. Depending on the parame-

ters used, the same accelerator can be synthesized to have different area, per-

formance, and power. We use the same set of parameters when synthesizing

the baseline and DAE versions to exclude the possibility that the improvement

comes from different synthesis parameters. To ensure that the improvement is

not from poorly optimized baseline, we apply most HLS optimizations includ-

ing pipelining and unrolling so that baseline accelerators have best performance

within the system-level constraints (such as the number of memory ports or

memory bandwidth).

To validate the performance of the baseline, we simulated the performance

of functionally equivalent software implementations of these accelerators. Fig-

ure 2.10 shows the performance comparison between in-order, 4-wide out-of-

order processors, and the baseline accelerators. Note that mdknn and viterbi

are not included because we use custom-precision fixed-point arithmetic in their

implementations, which would be inefficient to emulate in software on proces-

sors. On average, the performance of the baseline accelerators is about 2x of

an in-order processor, and is comparable to an out-of-order processor. These

numbers are roughly in line with previous studies [43, 108]. The performance

of the baseline accelerators is mainly limited by the memory bottleneck. We

will show that with the proposed techniques to enable efficient data supply, the

accelerators could achieve much higher performance.

33

bbgemm
bfsbulk

gemm nw
spmvcrs

stencil2d

geomean
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

IO OOO4 accel-baseline

Figure 2.10: Comparison of baseline accelerators performance with pro-
cessors.

2.5.4 Performance Results

Figure 2.11 compares the performance of the proposed optimization schemes

normalized to the baseline accelerator. Overall, the stride prefetcher with mem-

ory access tags improves the performance by 45% on average over the baseline.

DAE alone achieves an average speedup of 1.89x, while DAE combined with

stride prefetching achieves a 2.28x speedup.

Comparing stride prefetching and DAE, DAE usually achieves higher per-

formance due to decoupling and having more precise knowledge about the ad-

dresses to be accessed next. One such case is when the access pattern is irreg-

ular, but the addresses can be computed early. For example, mdknn computes

the force between a molecule and its N nearest neighbors. The access pattern

is highly irregular because the addresses of the N neighbors in memory usually

do not have a pattern. However, the addresses can be computed early because

the indices of these N neighbors are known. Hence, the access unit can send out

34

bbgemm
bfsbulk

gemm
mdknn nw

spmvcrs

stencil2d
viterbi

geomean
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

S
pe

ed
up

baseline stride DAE DAE+stride

Figure 2.11: Performance of the proposed schemes normalized to the base-
line accelerator.

load requests early to hide memory latency. In contrast, the stride prefetcher is

unable to predict the addresses and thus unable to prefetch them.

DAE also has advantages when the accesses consist of regular but short

streams. One example is viterbi. The stride prefetcher needs warm-up, thus

is too late in sending out prefetch requests. It also prefetches beyond the end of

the stream before realizing the stream has ended, wasting memory bandwidth

and causing cache pollution. In contrast, DAE has precise information about

when the stream begins and ends, thus is able to preload data effectively.

There are some cases where prefetching is more effective than DAE. For ex-

ample, bfsbulk performs a graph traversal, which is dominated by memory

accesses with dependencies. As a result, the access unit in the decoupled ar-

chitecture is not able to pre-calculate the addresses. Prefetching, on the other

35

hand, speculatively fetch data from memory without computing the exact ad-

dresses, which improves performance in this case because there is regularity in

the access pattern even though the addresses cannot be determined early.

It is also clear from the results that prefetching and DAE can often comple-

ment each other, providing a higher speedup compared to using only one of

them. For example, in the inner loop of spmvcrs (code shown in Section 2.2.3),

DAE is able to hide the memory latency for accesses to val and vec, but not

cols. Because cols is used by the access unit to calculate the address to vec,

a cache miss for cols stalls the access unit. However, the prefetcher can easily

detect the strided accesses to cols and prefetch it into the cache. As a result, we

observe the combined scheme with both DAE and stride prefetching achieves

the speedup of 2.85x, which is higher than the speedups, 1.45x and 2.48x respec-

tively, when DAE and prefetching are applied separately.

We note that adding prefetching to DAE does not always yield higher perfor-

mance. For example, we see a slight degradation in performance for viterbi

when prefetching is enabled. This is because DAE alone can already hide most

of the memory latency, while prefetching, due to its imprecise nature, can pol-

lute the cache and contend for memory bandwidth.

2.5.5 Area, Power, and Energy Results

Table 2.5 shows the area and power numbers for the baseline and DAE acceler-

ators. The area of DAE accelerators is larger than the baseline by 14% (mdknn)

to 129% (spmvcrs). We note that our area and power analysis only includes the

accelerator itself but not the cache, which includes a prefetch unit. The relative

36

Table 2.5: Area and power of the baseline and DAE accelerators. The Abs
column shows absolute numbers, and the Norm column shows
results normalized to the baseline.

Benchmark
Base Area Base Power DAE Area (µm2) DAE Power (mW)

(µm2) (mW) Abs Norm Abs Norm

bbgemm 25,191 4.15 52,943 2.10x 8.11 1.96x

bfsbulk 11,507 1.22 14,437 1.25x 1.41 1.16x

gemm 22,127 1.87 47,305 2.14x 3.39 1.81x

mdknn 170,312 32.58 194,034 1.14x 48.40 1.49x

nw 49,094 4.54 89,396 1.82x 8.81 1.94x

spmvcrs 18,686 2.54 42,736 2.29x 4.04 1.59x

stencil2d 27,579 3.88 49,567 1.80x 7.69 1.98x

viterbi 42,963 4.78 80,982 1.88x 11.30 2.36x

bbgemm
bfsbulk

gemm
mdknn nw

spmvcrs

stencil2d
viterbi

0

20

40

60

80

100

P
er

ce
nt

ag
e

A
re

a

baseline
access

execute
memunit/queue

other

Figure 2.12: Area breakdown of DAE accelerators. The baseline area is
shown for comparison.

37

overhead will be much lower when the cache, which exists in both the baseline

and our architecture, is included.

The area increase comes from several factors: First, the DAE architecture

adds additional queues and memory units to accelerators. The area for the

queues and memory units are similar across accelerators given that we used

the same queue size for all benchmarks. As a result, this overhead represents a

large relative overhead for small accelerators such as spmvcrs. For larger ac-

celerators such as mdknn, the area overhead for queues and memory units only

represents a small percentage. Later, we show that this overhead can be reduced

significantly by customizing the size of queues for each accelerator.

Second, area overhead can come from the reduced resource sharing between

the access part and the execute part in the DAE architecture. During the syn-

thesis process, the HLS tool tries to share resources between various parts of

the accelerator to reduce area. In the baseline accelerators, such optimizations

can be performed across the entire accelerator. For example, a multiplier may

be shared between memory address computation logic and value computation

logic. In the DAE architecture, such sharing is not possible between the access

and execute units because they need to be decoupled and synthesized sepa-

rately. We note that while reduced resource sharing increases area, it also allows

more operations to be performed in parallel and improve performance. The im-

pact of reduced resource sharing is lower for larger accelerators where there are

abundant opportunities for resource sharing within the access unit or execute

unit.

Figure 2.12 shows the breakdown of area of the DAE accelerators compared

to the baseline. The area is broken down into access unit, execute unit, memory

38

bbgemm
bfsbulk

gemm
mdknn nw

spmvcrs

stencil2d
viterbi

0

20

40

60

80

100
P

er
ce

nt
ag

e
P

ow
er

baseline
access

execute
memunit/queue

other

Figure 2.13: Power breakdown of DAE accelerators. The baseline power is
shown for comparison.

units (including queues), and other components such as configuration registers,

miscellaneous control logic, buffers inserted during place and route, etc. The

results indicate that the main area overhead comes from the memory units and

queues. The combined area of the access unit, the execute unit and other com-

ponents, which have corresponding logic in the baseline accelerator, is only 13%

higher than the area of the baseline on average, indicating the impact of reduced

resource sharing is low.

Figure 2.13 shows the breakdown of power consumption. The percentage

of power consumed by memory units and queues ranges from a few percent

to around 35%. For mdknn, which is relatively large, the power consumption

of memory units and queues is only 2.2% of the total power consumption. In

addition to the added operations for memory units and queues, the DAE archi-

39

bbgemm
bfsbulk

gemm
mdknn nw

spmvcrs

stencil2d
viterbi

geomean
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
ne

rg
y

baseline stride DAE DAE+stride

Figure 2.14: Energy comparison.

tecture also has higher power consumption compared to the baseline because

it has higher activity factors. DAE reduces pipeline stalls waiting for memory

accesses and allows accelerators to perform more computations per unit time.

Figure 2.14 shows the energy consumed by the baseline and DAE accelera-

tors to complete the computation. On average, the stride prefetcher is able to

reduce energy for both the baseline and DAE accelerators, by 17.1% and 7.6% re-

spectively. This is because the stride prefetcher is able to reduce memory stalls,

leading to shorter execution time. As a result, the accelerators spend less time

burning energy without doing useful work.

Compared to the baseline, DAE accelerators often use less or a comparable

amount of energy even though they have significantly higher power, which in-

dicates that the higher power mostly comes from doing more useful work per

unit time because of reduced pipeline stalls. In cases where DAE accelerators

40

bbgemm
bfsbulk

gemm
mdknn nw

spmvcrs

stencil2d
viterbi

0

20

40

60

80

100
P

er
ce

nt
ag

e
E

ne
rg

y

125 198 100 121

baseline
access

execute
memunit/queue

other

Figure 2.15: Energy breakdown of DAE accelerators. The baseline energy
is shown for comparison. If baseline energy is higher than
DAE, it is annotated with a number on top of the bar.

use less energy, it is likely to be because the energy spent while stalling is signif-

icant in the baseline. While our design flow automatically inserts clock gating,

it does not completely remove static power consumption. Most of these stalls

are removed in the DAE accelerators, resulting in lower energy.

Figure 2.15 shows the breakdown of the energy consumption. The energy

numbers are for the baseline and the DAE architecture without prefetching. The

percentage of energy consumed by the memory units and queues ranges from

2.2% to 36.8%. Again, the relative overhead is lower for large accelerators com-

pared to small accelerators.

41

bbgemm
bfsbulk

gemm
mdknn nw

spmvcrs

stencil2d
viterbi

geomean
0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

LQ04
LQ08

LQ16
LQ32

LQ64

Figure 2.16: Performance comparison when varying load queue (LQ)
sizes.

2.5.6 Design Space Exploration: Queue Size

The size of queue structures in the decoupled accelerator can impact the per-

formance, area, and energy consumption of the accelerator. Larger queues can

provide more decoupling, thus potentially better performance, but may also

have a larger area and consume more energy. Figure 2.16 shows the normalized

performance of the accelerators when varying load queue sizes from 4 entries

to 64 entries. On average, larger load queues yield higher performance, but the

improvement diminishes as the queue size increases. This indicates that as long

as the access unit runs sufficiently ahead of the execute unit, it can provide the

decoupling needed to hide the latency of occasional cache misses.

The results also indicate that some accelerators are less sensitive to queue

sizes than others. Thus, accelerator-specific optimization of the queue sizes can

42

Table 2.6: Impact of the queue size customization on area and perfor-
mance. Numbers are normalized to LQ16/SQ08.

Benchmark
Custom Total Area (µm2) Queue Area (µm2) Norm

Size Abs Norm Abs Norm Perf

bbgemm LQ04/SQ08 40,442 0.76 12,504 0.50 0.94

bfsbulk LQ02/SQ08 14,437 1.00 1,473 1.00 1.00

gemm LQ08/SQ02 33,535 0.71 11,423 0.45 0.89

mdknn LQ16/SQ04 191,183 0.99 9,441 0.77 1.00

nw LQ04/SQ08 82,449 0.92 17,594 0.72 0.97

spmvcrs LQ08/SQ02 29,788 0.70 10,582 0.45 0.97

stencil2d LQ08/SQ02 39,372 0.79 7,232 0.41 1.05

viterbi LQ08/SQ08 72,661 0.90 19,183 0.70 0.99

be used to reduce the area overhead of decoupled accelerators, with minimal

degradation in performance.

Table 2.6 shows the impact of customizing queue sizes on the area and per-

formance of DAE accelerators. For each accelerator, we choose a queue size that

has lower area but not significantly lower performance, and normalize the area

and performance to the configuration with constant 16-entry load queues and

8-entry store queues across all accelerators. On average, the customization re-

duces queue area and total area by 37% and 15% respectively, while lowering

performance by only 2.3%.

43

CHAPTER 3

PARALLEL ACCELERATOR FRAMEWORK

3.1 Introduction

This chapter proposes an architectural framework for generating parallel accel-

erators from high-level descriptions of parallel algorithms. Leveraging concepts

from task-based parallel programming, the framework enables software pro-

grammers to quickly create high-performance accelerators using familiar par-

allel programming paradigms, without needing to know low-level hardware

design knowledge. The framework uses a computation model that supports

dynamic parallelism, and includes a flexible architecture that supports dynamic

scheduling to enable mapping a wide range of parallel applications and achieve

good performance. In addition, the framework proposes a unified language

mapped to both software and hardware, enabling programmers to create paral-

lel software and parallel accelerators in a unified framework.

Ever since the exponential growth of microprocessor frequency stopped,

computing systems have heavily relied on parallelism to achieve performance

gains. Parallelism comes in many forms, such as instruction-level parallelism,

data-level parallelism, and task-level parallelism. In addition, dynamic paral-

lelism, where work is generated at run-time rather than statically at compile

time, is inherent in many modern applications and algorithms, and is widely

used to write parallel software for general-purpose processors. For example,

hierarchical data structures such as trees, graphs, or adaptive grids often have

data-dependent execution behavior, where the computation to be performed

is determined at run-time. Recursive algorithms such as many divide-and-

44

conquer algorithms have dynamic parallelism for each level of recursion. Al-

gorithms that adaptively explore space for optimization or process data as in

physics simulation also generate work dynamically.

Modern applications, regardless of being implemented on general-purpose

processors or as specialized hardware, often need to exploit multiple types of

parallelism to achieve good performance. Effectively exploiting parallelism in

accelerators is particularly important for two reasons. First, hardware is in-

herently parallel. A central problem in accelerator design is how to turn the

raw hardware parallelism into good application performance. Second, recon-

figurable hardware such as field-programmable gate-arrays (FPGAs) are be-

coming an increasingly popular general-purpose acceleration platform because

they are flexible, easily accessible (e.g., through the cloud [6]), and increasingly

integrated with general-purpose cores. FPGAs provide a vast amount of pro-

grammable resources, but can only operate at a frequency that is much lower

than general-purpose processors or accelerators implemented as ASICs. As a

result, it is crucial to exploit parallelism in order to achieve performance on

FPGA-based accelerators.

Unfortunately, today’s accelerator design methodologies do not provide ad-

equate support for productively exploiting various types of parallelism, es-

pecially dynamic parallelism. For example, high-level design frameworks

for accelerators such as C/C++-based High-level synthesis (HLS) [28, 115] and

OpenCL [54] are mostly designed to exploit static data-level or thread-level par-

allelism that can be determined and scheduled at compile time and mapped

to a fixed pipeline. Domain-specific languages such as Liquid Metal [11] and

Delite [58] raise the level of abstraction but also only support static parallel

45

patterns. A recent study explored dynamically extracting parallelism from ir-

regular applications on FPGAs [64], but still only supports a limited form of

pipeline parallelism and does not provide efficient scheduling of dynamically

generated work on multiple processing elements. Low-level Register-transfer-

level (RTL) designs, on the other hand, provide flexibility to implement arbitrary

features, but require long design cycles and significant manual effort, making

them unattractive especially when targeting a diverse range of applications.

This chapter proposes a framework that solves this problem and enables pro-

grammers to productively express diverse types of parallelism. The framework

includes three key innovations: (1) a new parallel computation model that is

general enough while suitable for hardware, (2) an architecture that efficiently

realizes the new computation model in hardware, and (3) a productive design

methodology to automatically generate RTL.

As a parallel computation model, we propose to adopt a tasked-based pro-

gramming model with explicit continuation passing. Task-based parallel pro-

gramming is an increasingly popular approach to write parallel software that

achieves this goal, with many frameworks introduced for chip-multiprocessors

(e.g., Intel Cilk Plus [4, 62], Intel Threading Building Blocks (TBB) [93], and

OpenMP [5]). These task-based frameworks allow diverse types of parallelism

to be expressed using a unified task abstraction. They also provide good support

for dynamic parallelism by allowing a task to generate child tasks at run-time.

To support a wide range of communication patterns among tasks and enable ef-

ficient hardware implementations, we use explicit continuation passing to encode

inter-task synchronization.

Then, we propose a novel architecture that can execute an arbitrary compu-

46

tation described using the explicit continuation passing model. The architec-

ture works as a configurable template that provides a platform to dynamically

create and schedule tasks, and supports a trade-off between generality and ef-

ficiency. For irregular workloads, the architecture can adaptively schedule in-

dependent tasks to a pool of processing elements using work-stealing [16,17,40],

and supports fine-grained load balancing. When the computation exhibits a

simple static parallel pattern (e.g., only data-parallel), the architecture can use

static scheduling for efficiency. The architecture separates the logical parallelism

of the computation from the physical parallelism of the hardware, and enables

programmers to express the computation as tasks without worrying about the

low-level details of how these tasks are mapped to the underlying hardware.

To minimize the manual effort for accelerator designers, we propose a new

design methodology that combines HLS with the proposed computation model

and architecture template. The design methodology uses (1) HLS to generate

the application-specific worker from a C++-based description, and (2) a param-

eterized RTL implementation of the architecture template to generate the final

accelerator RTL with the desired architecture features and configuration. The

designer does not need to write any RTL in order to use the framework.

We built a prototype on the Xilinx Zynq FPGA and implemented a number

of parallel accelerators to demonstrate that our framework can indeed handle a

wide range of application and provide performance improvements on FPGAs

today. We further evaluate the proposed framework in the context of a future

SoC with multiple general-purpose cores and an integrated reconfigurable fab-

ric with a cache-coherent memory system using detailed simulations. The re-

sults suggest that our framework can generate accelerators that are scalable,

47

and achieve significant speedup compared to a parallel software implementa-

tion using Intel Cilk Plus across eight cores.

The rest of the chapter is organized as follows. Section 3.2 gives an overview

of the computation model based on explicit continuation passing that support

dynamic parallelism. Section 3.3 describes the proposed accelerator architec-

ture. Section 3.4 describes the design methodology for the proposed accelera-

tors. Section 3.5 introduces a unified design flow that enables mapping a single

description to both parallel accelerators and software. Section 3.6 describes our

evaluation methodology, experimental setup, and evaluation results.

3.2 Computation Model for Dynamic Parallelism

In this section, we introduce the computation model that we use in our frame-

work. The model is based on explicit continuation passing, inspired by task-

based parallel programming languages such as MIT Cilk [16, 40], and allows

diverse types of parallelisms to be expressed and scheduled under a common

framework.

3.2.1 Primitives

A task is a piece of computation that takes as input a number of arguments, as

well as a continuation. More formally, a task is a tuple (f , args, k), where f is the

function, args is a list of arguments to f , and k is the continuation which points

to another task that should continue after the current task finishes. Formally, a

continuation is a tuple k = (c, p) where c is a pointer to a task, and p is an index

48

into the pending task’s args list. Intuitively, a task is analogous to a function call

in software, where f and args are a function pointer and the arguments to the

function, and k points to the caller, which receives the function’s return value

and continues execution.

A task can spawn new tasks while it is executing. The spawned tasks are

called child tasks. Spawning tasks is similar to function calls except that the par-

ent and child tasks are allowed to run concurrently. The spawned tasks even-

tually need to be joined, so we know that they finished and subsequent compu-

tation (that potentially depends on the output of the child tasks) can proceed.

Today’s software frameworks use special join commands that call into a sophis-

ticated runtime to perform synchronization, which is difficult to implement in

hardware. Instead, our model uses explicit continuation passing that leads to a

simpler hardware architecture.

A task can be either ready or pending. A task is ready if it has received all of its

arguments, and thus is ready to execute. A task is pending if some of its argu-

ments are still missing, for example, because the tasks that produce them have

not completed yet. Each pending task is associated with a join counter j, whose

value is the number of missing arguments. A task returns a value by sending

it to the pending task pointed by its continuation. In our model, task return

values and arguments are two sides of the same coin: a task’s return value is

simply another task’s argument. Upon receiving the value, the join counter j

of the pending task is decremented. When the join counter reaches zero, the

pending task has received its last missing argument, and becomes ready.

49

3.2.2 Continuation Passing

Today’s parallel programming frameworks for software uses a runtime system

to manage synchronizations among tasks. Whenever a task needs to perform

a synchronization operation such as a join, it transfers control to the runtime,

which then checks the state of other tasks and decides the action to perform.

This approach is challenging to implement in hardware. First, software can per-

form control transfers between the user code and runtime with function calls or

setjmp/longjmp, and easily save and restore the program state using stack

frames. These capabilities are not present in hardware accelerators. Second, the

runtime logic is often quite complex, which would incur high overhead if imple-

mented in hardware. We address these challenges by using explicit continuation

passing for synchronization instead of a runtime system.

Continuation passing style (CPS) is a style of programming where control

is passed explicitly in the form of a continuation that represents what should

be done with the result that the current procedure generates. Our framework

uses continuation passing to express computation as a dynamic task graph with

explicit dependence. The continuation passing serves as the foundation and can

be used to construct other abstractions such as data-parallel loops and fork-join

patterns.

In our model, the continuation of a task points to a pending task (more pre-

cisely, one of the pending task’s arguments) that should receive the current

task’s return value. The simplest use of continuation passing is to implement

sequential composition of tasks. Suppose we want to execute tasks A and B se-

quentially and return the result to continuation k. Using continuation passing,

we can invoke task A with k as its continuation. When A finishes, it spawns

50

A

B

k, argA

k, argB

k

return
value

A B
k

C D

kB1 kB2

(a) (b)

k k

Figure 3.1: Continuation passing for (a) sequential composition of tasks,
(b) fork-join. Downward arrows represent spawning tasks.
Horizontal arrows represent creating successor tasks. Dotted
arrows represent returning values (arguments).

task B, passing its own continuation k to B. When B finishes, it returns its result

to k. Figure 3.1(a) illustrates this operation.

Continuation can also be used to implement the fork-join pattern, which is

a common pattern for dynamically generating parallel tasks and perform syn-

chronization. Suppose we would like to run two parallel tasks and combine

their results. In this case, task A creates a pending task B called the successor,

spawns two child tasks C and D, and points their continuations to B. This com-

pletes the fork step. When the child tasks finish, they send their result values to

B. B becomes ready once it receives the results of both C and D. This completes

the join step. Figure 3.1(b) illustrates the fork-join operation.

Task Graph Examples

Using continuation passing combined with task spawning, both static and dy-

namic parallel algorithms can be expressed in our model. When the algorithm

executes, the tasks form a graph that dynamically unfolds. Here we show three

example task graphs from different algorithms.

51

S

S2

1 0S2

1 0

4

3 S

1

S0
255

0
63

64
127

128
191

192
255

M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

k

k

(a)

(c)

(b)

a. Vector-Vector Add
b. Fibonacci
c. Dynamic Programming

Figure 3.2: Task graphs constructed using continuation passing. (a)
Vector-vector add. Node labels represent the start and end in-
dices of the sub-vectors. (b) Fibonacci. Each numbered node
represents the task for fib(n). Nodes labeled S represent the
successor (sum) tasks. (c) Dynamic programming. Solid ar-
rows represent spawns along which the continuation is passed.
Result values are passed along dotted arrows, with the final re-
sult sent to the continuation k.

The first example computes the sum of two vectors of length 256. Suppose

we allow the vector to be divided into chunks of length 64. Figure 3.2(a) shows

the task graph. As the computation is data-parallel, the task graph is very reg-

ular, and can (though does not have to) be constructed using only a single level

of child tasks. In addition, only the child tasks perform actual work, and the

parent and successor tasks are only for synchronization because the results of

child tasks do not need to be combined.

Consider another example that calculates the nth Fibonacci number by re-

cursively applying the formula f ib(n) = f ib(n− 1) + f ib(n− 2), and calculate

f ib(n− 1) and f ib(n− 2) concurrently. This is a typical fork-join pattern. Here

we need two types of tasks: fib and sum. The fib task takes a number we

want to calculate Fibonacci for, and if it is the base case, it sends the result to the

52

continuation. Otherwise, it performs a fork-join operation, with the successor

task performing the sum operation. For example, calculating fib(4) results in

the graph shown in Figure 3.2(b).

This example illustrates why it is challenging to map computations with dy-

namic task-level parallelism to a hardware accelerator. First, tasks are created

dynamically during execution, which makes it difficult to enumerate them stati-

cally. Second, the computation involves recursion, which is often not supported

in current hardware design tools. Third, the task tree is often imbalanced, which

makes techniques that partition work statically inefficient.

Now consider a third example, in which an algorithm fills a matrix with val-

ues. Each element depends on its left and top neighbor. This pattern is common

in many dynamic programming algorithms. Figure 3.2(c) shows the task graph

for filling a simple 3x3 matrix. This type of general task-parallel pattern be

expressed using continuation passing, but cannot be easily expressed in frame-

works that only support fork-join. This example shows that using continuation

passing can also improve expressive power in some cases.

Nesting and Composability

It is apparent from the examples above that the computation model naturally

supports nested parallelism, where a spawned task can recursively spawn par-

allel sub-tasks. Nesting is important for achieving good parallelization for many

algorithms. For example, in Fibonacci, the degree of parallelism at each task is

only two. Without nesting, only the root task can be parallelized, yielding a

maximum speedup of two. With nesting, all non-overlapping subtrees of the

53

f ib task tree can run in parallel, significantly increasing the amount of paral-

lelism.

Another feature of the computation model is composability, which means

the computation can be expressed in a combination of data-parallel, fork-join,

or general task-parallel patterns, and the resulting program should still work.

This is from the fact that all higher-level patterns are ultimately transformed to

the continuation passing primitives.

3.2.3 Scheduling the Computation

The model described above enables expressing concurrency in the computation.

However, it is up to the scheduler to schedule the tasks onto processing elements

at run-time for parallel execution. Our framework supports both dynamic work

scheduling using work stealing [16, 17] for general dynamic computation, and

static task distribution for simple data-parallel computations. Here, we briefly

describe the work stealing model.

We model each processing element as a datapath that can process tasks, a

local task queue that stores ready tasks, and a pending task storage that holds

pending tasks. Each processing element operates on its own task queue in a

LIFO (Last-In First-Out) manner, that is, operating on the tail of the queue.

When a processing element is idle, it first tries to dequeue and execute a task

from the tail of its local task queue. If a task is spawned or a pending task be-

comes ready, it is appended to the tail of the task queue. If the task queue is

empty, the processing element (thief) begins work stealing by randomly select-

ing another processing element (victim) and trying to steal a task from the head

54

of victim’s task queue, that is, the oldest task in the queue. If the continuation of

a task refers to a pending task on another processing element, and sending the

task’s return value caused the pending task to become ready, the newly created

task is transferred back to the original processing element to be executed. This

is needed to implement greedy scheduling, which means the processing element

that produces the last missing argument of a pending task should continue ex-

ecution with the successor task [94]. Greedy scheduling is important for the

space bound.

A task graph is said to be fully strict if every task sends its result only to

its parent’s successor task. Both the vector-addition and Fibonacci graphs are

fully strict by this definition. In fact, any fork-join computation described using

the above approach is fully strict. It can be shown that for fully strict compu-

tations, the scheduling policy described above has the same behavior as Cilk’s

scheduler [16], which is provably efficient. Specifically, it can be shown that the

space to store the tasks required for an execution with P processing elements

is bounded by SP ≤ S1P, where S1 is the space required for a serial execution

on one processing element [17]. This bound is important to put a limit on the

task queue sizes required for the parallel execution. This limit guarantees that

the parallel execution is space efficient, which avoids the space explosion issue

seen in certain scheduling policies. Also, the space bound is crucial for acceler-

ators as the task queues are likely hardened rather than being a data structure

in the memory.

55

3.2.4 Function Calls

Traditional HLS tools provide insufficient support of function calls, especially

the ones that are deeply nested or recursive. This is not surprising because re-

cursive function calls require a stack, which a hardware accelerator does not

have. As a result, these tools can only handle simple functions that can be in-

lined. Our computation model naturally supports recursive function calls by

reusing the task spawn and continuation mechanisms. This is similar to how

classic continuation passing style programs handle function calls.

3.3 Accelerator Architecture

The accelerator architecture implements the computation model described in

Section 3.2. Specifically, the architecture is designed to fulfill two major goals:

(1) implementing task spawning and explicit continuation passing in hardware,

and (2) scheduling the computation. Figure 3.3 shows the high-level system

architecture, with the accelerator shown in the shaded box. The accelerator con-

sists of multiple tiles, and each tile is composed of a configurable number of

processing elements (PEs), each with a unique ID. A tile serves as a basic build-

ing block in the architecture, which is a fully-functional task processing engine.

The accelerator can consist of any number of tiles without changing its function-

ality. This tile-based architecture enables an accelerator designer to easily scale

the number of tiles and PEs, and also reduces design effort as one component is

reused multiple times. The tiles are connected together using two on-chip net-

works: an argument/task network, and a work stealing network. Each tile has

an L1 cache, shared by the PEs in that tile. The accelerator also has an interface

56

block (IF) that communicates with the host CPU to receive commands.

Memory Controller

Last-Level Cache

Argument / Task Network

CPU

L1$

IF

Work Stealing Network

L1$

PE PE

Tile

L1$

PE PE

Tile

Figure 3.3: System architecture. The accelerator is shown in the shaded
box.

In this study, we present the architecture in the context of an SoC where

the general-purpose cores and accelerators share a single address space as well

as the last-level cache through a cache-coherent interconnect. The accelerators

can be implemented either as ASIC or using on-chip FPGA fabric. In the latter

case, the architecture fits well into future integrated CPU-FPGA SoCs, which are

increasingly popular and attractive for general-purpose acceleration because it

can be easily reconfigured, and it allows fine-grained data sharing between the

CPU and accelerators. For applications that do not need fine-grained sharing,

the proposed architecture can also be adapted to discrete FPGAs with changes

to the memory hierarchy.

We present two variants of our architecture, named FlexArch and LiteArch,

which support different trade-off points between flexibility and overhead.

FlexArch supports the full continuation passing model, and allows program-

mers to implement algorithms using many parallel patterns including data-

57

Table 3.1: Comparison between tile architectures.

Pattern FlexArch LiteArch

Data-Parallel Yes Yes

Fork-Join Yes No

General Task-Parallel Yes No

Task Scheduling Work-Stealing Static Distribution

parallel and fork-join patterns as well as nesting in flexible ways. It uses work-

stealing for task scheduling. In comparison, LiteArch only supports the data-

parallel pattern, and uses static task distribution for task scheduling. LiteArch

is intended as a lightweight alternative for applications where a static data-

parallel pattern is sufficient and does not need advanced load balancing ca-

pabilities. Table 3.1 summarizes the features of the two architectures. An al-

gorithm using the data-parallel pattern can map to either architecture without

code changes. In contrast, an algorithm using the fork-join or continuation pass-

ing pattern maps naturally to FlexArch, but can only be mapped to LiteArch if

it can be rewritten using the data-parallel pattern.

3.3.1 FlexArch Tile and PE Architecture

Figure 3.4 shows the architecture of a FlexArch tile. A tile contains multiple pro-

cessing elements, as well as a pending task storage (P-Store), an argument/task

router, and network interfaces (Net IF). These components are connected via

intra-tile buses. Each PE consists of a worker and a task management unit

(TMU).

58

Worker

P-Store
TMU

Net IF

task
out

cont
req
cont
resp

Cache Interface

task
in

steal
req

steal
resp

queue

arg
out

Arg/Task
Router

Work Stealing Network Arg/Task Network

arg

task

Net IF

PE

steal arg
task

cont

PE

steal arg
task

cont

arg task

task

mem
req

mem
resp

Figure 3.4: FlexArch tile.

The worker performs task-specific computations. Because this is the part

that an accelerator designer needs to describe for each application, the architec-

ture is designed to keep the worker simple. We factor out common function-

alities such as task management into separate modules that can be reused, and

provide the worker an interface to communicate with these modules by sending

and receiving messages. It has a task in port for receiving a task, a task out

port for spawning a task, an arg out port for returning a result value, and a

pair of cont req and cont resp ports for creating a successor task and re-

ceiving a continuation that points to it. The worker also has a memory port.

The architecture does not stipulate how the worker is implemented as long as

it follows the interface protocol. For example, it can be implemented in either

HLS or RTL. Our architecture currently uses homogeneous workers that can

run any task in the computation graph. The type of a task is identified by the

type field in the task message, which corresponds to the f in the computation

model. It is also possible to extend the framework to use heterogeneous workers

59

where each worker is used to process different tasks, and is shared by the tile.

This allows coarse-grained resource sharing at the tile level. In contrast, when

using homogeneous workers, HLS tools perform fine-grained resource sharing

between the logic for different tasks at the worker level.

The task management unit (TMU) is responsible for feeding the worker with

tasks. Internally, it has a task queue that stores ready tasks. The task queue is

implemented as a double-ended queue that supports operations on both ends.

The worker enqueues and dequeues tasks at the tail of the queue in a LIFO

order, which is important because it results in much better task locality than

FIFO order, by traversing the task graph in a depth-first manner. When the task

queue becomes empty, the TMU initiates work stealing. It uses a linear feedback

shift register (LFSR) to pick a random PE as the victim. Then it sends a steal

request to the victim through the network. When the TMU on the victim PE

receives the request (shown as dotted arrows in Figure 3.4), it dequeues a task

from the head of its queue and sends it back to the stealing PE. Stealing from

the head is important for efficiency because it enables stealing a larger chunk of

work with each request (i.e. the task at the head is closer to the root of the task

spawn tree).

During low-parallelism phases of the computation, there may not be enough

parallel tasks available to keep all processing elements busy. As a result, the

TMUs will repeatedly send out work stealing requests, potentially causing con-

gestion in the work stealing network. To avoid this problem, the TMUs imple-

ment an exponential backoff scheme. We add a waiting period, which repre-

sents the number of cycles the TMU needs to wait before sending out a work

stealing request. Initially, the waiting period is set to a single cycle. After each

60

unsuccessful steal, which indicates that there are not enough parallel tasks avail-

able, the waiting period is doubled until it reaches a limit (e.g., 128 cycles). In

this way, the work stealing activity is throttled during low-parallelism phases,

which not only alleviates network congestion, but also reduces energy con-

sumption. On the other hand, when the computation enters a high-parallelism

phase, we would like the PEs to quickly pick up the parallel tasks and process

them. To achieve this goal, we improve the design so that when the TMU per-

forms a successful steal, the waiting period is reset to a single cycle. This allows

the TMUs to quickly exit the exponential backoff process and begin processing

the parallel tasks that become available.

The P-Store holds pending tasks that are waiting for arguments, and keeps

track of whether they are ready for execution. Its function is analogous to the

reservation stations in an out-of-order processor. A straightforward design is

to implement the P-Store as a centralized structure for the entire accelerator,

where all pending tasks are kept. However, this would lead to severe contention

when scaling up the number of PEs. We address this challenge by proposing

a distributed architecture, where each tile has a local P-Store, but is still able

to access P-Stores on other tiles over the network. Because of locality in the

processing of the task graph, pending tasks created by a tile are likely to be

consumed within that tile, which means most accesses would go to the local

P-Store without incurring network traffic.

Figure 3.5 shows the P-Store architecture. Each P-Store consists of a control

unit, a free list, a join counter array, a metadata array, and argument arrays. The

free list keeps track of the available entries in the P-Store. When a PE requests

to create a pending task, an entry is allocated, and a continuation ID is returned.

61

Free
List

Join
Cntr

Meta
Array

Argument
Arrays

Ctrl

taskarg

req

resp

Figure 3.5: P-Store architecture.

The join counter array stores the number of missing arguments for each pend-

ing task. When an argument is received, the data is written to the argument

array specified by the continuation, and the join counter is decremented. If the

counter reaches zero, the task that became ready is sent to the PE that produced

the last argument, and the entry is deallocated.

The task queue and P-Store implemented in hardware have a maximum ca-

pacity that is fixed at design time. Thus it is important to make sure that there

is enough space to hold the ready and pending tasks. There are two aspects

of this issue. First, there needs to be enough space for a serial execution of the

computation with a single PE. For fully strict computations, the space needed is

proportional to the critical path of the task graph. For most parallelizable appli-

cations, the critical path is much smaller than the number of tasks in the graph

(the total amount of work), because this is a key requirement for the application

to be parallelizable. In fact, when the task spawn tree is balanced, the critical

path can be derived from the height of the tree, which grows logarithmically

with the number of tasks. As a result, the amount of space required is small

even for very large problem sizes. Second, when the number of PEs grows, the

space needed for a parallel execution should not exceed the available task queue

62

and P-Store space. The space bound discussed in Section 3.2.3 guarantees that

the space required for a parallel execution with P processing elements is at most

S1P, where S1 is the space required for a serial execution. Assuming we fix the

number of PEs per tile, the available task queue and P-Store space also grows

linearly with the number of tiles. As a result, we can scale the number of tiles

without increasing the number of entries of the task queue or P-Store.

For highly unbalanced workloads, it is possible that the required space may

exceed what can economically fit in the on-chip task queue and P-Store. In this

case, we can extend the architecture to make the task queue and P-Store backed

by data structures in the main memory. The on-chip task queue and P-Store

would then cache the most recently used entries of the in-memory task data

structures.

The argument/task router steers argument and task messages between local

and remote tiles. This is needed for two reasons. First, when a worker returns an

argument, it may refer to a pending task on a remote tile. Second, when the P-

Store receives an argument from a remote PE and outputs a task, the task needs

to be sent back to the remote PE in order to implement greedy scheduling, which

is critical for guaranteeing the asymptotic bound on space [16]. The structure

of the argument/task router consists of two funnel/router pairs. The funnel

combines two message streams into one, and the router splits a stream into two

depending on whether the destination is local or remote.

63

Worker

arg
out

Cache Interface

task
in

TMU
queue

Arg/Task Network

mem
req

mem
resp

PE

task arg

task arg

Net IF
task arg

PE

task arg

Figure 3.6: LiteArch tile.

3.3.2 LiteArch Tile and PE Architecture

Figure 3.6 shows the architecture of a LiteArch tile. Compared to a FlexArch

tile, it does not have a P-Store or argument/task router as there is no support

for creating pending tasks or routing arguments and tasks between tiles. In this

architecture, the accelerator does not have a work stealing network. Within a

PE, the TMU is simplified to remove work stealing capabilities, and the worker

does not have P-Store ports. This architecture supports the data-parallel pattern

with the host CPU splitting the range into smaller subranges, and enqueuing

the tasks for execution on the PEs.

3.3.3 Networks

The argument and work stealing networks shown in Figure 3.3 are two logi-

cal networks. Our architecture does not specify the physical implementation of

these two networks, as long as they are compatible with the network interface

protocol. They can be implemented with different topologies, or even be com-

64

bined into one physical network. In our implementation, we use crossbars for

the networks.

3.3.4 Memory Hierarchy

In our architecture, the accelerators are integrated into the general-purpose

memory hierarchy via the last-level cache, and share the same address space

as the general-purpose cores. Integrating accelerators into the memory hierar-

chy represents a challenge for many HLS tools. Traditional HLS tools assume

a fixed latency for all memory accesses, and generate large monolithic designs

which struggle when facing the variable memory latency of a general-purpose

memory system; a delay in any memory response would cause the entire design

to stall. Our accelerator architecture overcomes this problem by making PEs in-

dependent so that one stalled PE would not affect others, and using dynamic

work scheduling to balance the load on the PEs should any imbalance arise due

to memory latencies.

The accelerator has a number of L1 caches, one per each tile. The caches are

kept coherent among themselves and with the last-level cache. We found that

the cache coherence support is not necessary for many applications, but use

coherent caches in our architecture to support a wider range of applications in-

cluding the ones that require fine-grained sharing among PEs. For FPGA imple-

mentations, the accelerator caches can be implemented using the block RAMs.

Future FPGAs can also include hardened L1 cache blocks. Because the block

RAMs can be clocked at a considerably higher frequency than the accelerator

logic [29], the L1 caches can be double-pumped. Also note that the workers

65

can have local memory structures such as scratchpads that are not a part of the

cache-coherent memory system. Some accelerators rely on the massive inter-

nal memory bandwidth provided by such local memory to achieve high per-

formance. When a task is stolen, data movement is performed transparently

through shared memory with coherent caches. Note that scratchpads in PEs are

only used to store temporary state, local to each task. We investigate the sin-

gle address space, cache-based memory system for two reasons. First, caches

reduce programming effort by removing the need to manually orchestrate data

transfers, which is a significant portion of the design efforts in today’s hardware

accelerators. Second, caches and a single address space enable fine-grained data

sharing between the CPU and FPGA, e.g. sharing pointer-based data structures,

which widens the range of applications that can be mapped to the architecture.

The proposed framework is also applicable to the DMA-based accelerators if

fine-grained data sharing is not needed, and designers are willing to explicitly

control data transfers. A PE can initiate DMA transfers to read input / write

output data for a task.

3.3.5 CPU-Accelerator Interface

The accelerator contains an interface (IF) block that serves as the interface be-

tween the CPU and the accelerator. The IF block implements a memory-mapped

interface. The CPU can send tasks to the accelerator and read results back using

memory-mapped accesses. Once the IF receives a task, it needs to pass it to the

PEs for processing. For FlexArch, we leverage work stealing for this purpose.

A PE can steal a task from IF via the work stealing network. For LiteArch, the

IF passes the task via the argument/task network, which is then consumed by

66

Architectural
Template

HW
Generation

Accelerator RTL

parameters
(architecture, # of PEs, etc)

HLSC++-Based
Algorithm Desc

Worker
RTL

(created by designer) (provided by framework)

Figure 3.7: Accelerator design flow.

one of the PEs.

3.4 Design Methodology and Framework

In this section, we discuss the methodology and framework we developed for

designing accelerators with low manual effort. Figure 3.7 shows the overall flow

of the framework. Accelerator designers describe the algorithm using a C++-

based worker description format, then the framework synthesizes the worker

RTL using HLS. Next, the framework combines worker RTL with an architec-

tural template it provides, and generates the final RTL of the accelerator.

3.4.1 Architectural Template

We implemented the proposed accelerator architecture as an architecture tem-

plate in PyMTL [69], a Python-based hardware generation language. The

template is parameterized so that the designer can configure the architecture

(FlexArch or LiteArch), the number of tiles and PEs, the number of entries of

67

Table 3.2: Summary of task APIs.

Name Arguments Description

spawn
t: task to be spawned

task out: task spawn port

Spawn child task t through

port task out

spawn next
t: task to be spawned

task out: task spawn port

Similar to spawn, but the task

is treated as a successor rather

than a child

make successor

t: task type

k: continuation

j: join count

cont req: request port

cont resp: response port

Create a successor task of type

t with j missing arguments

through the cont req and

cont resp port pairs, and

pass continuation k to it

send arg

k: continuation

arg: argument value

arg out: output port

Return argument arg to the

task pointed by k through

port arg out

the task queue and P-Store, as well as the cache size.

3.4.2 Algorithm Description Format

While the accelerator architecture does not specify how the task processing logic

(worker) should be implemented, in practice, high-level synthesis is usually

preferred because of its productivity compared to RTL design. We support the

HLS approach by defining a C++-based worker description (CPPWD) format

and a set of task APIs. Using CPPWD and the task APIs, designers can describe

the worker logic and express operations in the computation model such as task

68

spawning and synchronization. Table 3.2 summarizes the task APIs. The APIs

are implemented as a library, which enables them to be easily integrated into

existing HLS tools.

As an example, Figure 3.8 shows the CPPWD code for the Fibonacci algo-

rithm described in Section 3.2. The worker is defined as a function, and the

arguments of the function are the ports of the worker. The function header is

standard for all workers, except for the function name and task type, which

are defined by the designer. The body of the function defines the Fibonacci

algorithm, which recursively splits the problem into sub-problems by dynam-

ically spawning child tasks until reaching the base case, and then merging the

results back to obtain the answer. This algorithm is challenging to express us-

ing today’s accelerator design methodologies because it involves dynamically

bounded parallel recursion, but is trivial to express using our framework.

For the data-parallel pattern, the framework provides a helper function

(parallel for) similar to Intel TBB [93], which wraps the details of imple-

menting dynamic spawning/joining of tasks in an easy-to-use interface. CP-

PWD also supports the blocked range concept, which allows splitting a lin-

ear range into blocks of configurable size.

3.4.3 Accelerator RTL Generation

The framework generates the accelerator RTL by combining the synthesized

worker RTL with the architecture template according to the parameters speci-

fied by the designer, including the choice of the architecture, the number of PEs,

the number of task queue entries, cache size, etc. The framework then elabo-

69

1 void FibWorkerHLS
2 (
3 TaskInPort<FibTaskType> task_in,
4 TaskOutPort<FibTaskType> task_out,
5 ContReqPort cont_req,
6 ContRespPort cont_resp,
7 ArgOutPort arg_out
8) {
9 const FibTaskType task = task_in.read();

10

11 // continuation
12 task_k_t k = task.k;
13

14 if (task.type == FIB) {
15 int n = task.x;
16 if (n < 2)
17 send_arg(Argument(k, n), arg_out);
18 else {
19 // create successor task
20 k = make_successor(SUM, k, 2, cont_req, cont_resp);
21

22 // spawn child tasks
23 spawn(FibTaskType(FIB, k, 1, n-2, 0, 0), task_out);
24 spawn(FibTaskType(FIB, k, 0, n-1, 0, 0), task_out);
25 }
26 } else if (task.type == SUM) {
27 int sum = task.x + task.y;
28 send_arg(Argument(k, sum), arg_out);
29 }
30 }

Figure 3.8: C++-based worker description for Fibonacci.

rates the template and perform hardware generation to output the final RTL of

the accelerator. Design space exploration can be done easily by changing the

parameters given to the framework, without rewriting any code.

Using the design methodology, accelerator designers only need to write a

small amount of code describing a parallel algorithm, and the framework can

automatically generate the RTL description of a parallel accelerator.

70

Architectural
Template

HW
Generation

Parallel Accelerator

parameters

HLSC++-Based
Algorithm Desc

Worker
RTL

(created by designer) (provided by framework)

CPPWD-TBB
Library

Compilation
and Linking

TBB
Runtime

Parallel Software

(provided by framework)

Figure 3.9: Unified parallel accelerator and software flow.

3.5 Unified Framework for Parallel Accelerators and Software

In this section, we propose a design flow that enables mapping a single descrip-

tion of a parallel algorithm to both software and accelerators. Traditionally,

software programmers and accelerator designers rely on different languages

and frameworks. For example, to create parallel software, programmers usu-

ally use frameworks such as Cilk Plus [4], Threading Building Blocks [93], or

OpenMP [5]. To create parallel accelerators, designers either use hardware

description languages such as Verilog, or use specialized languages such as

OpenCL [54]. These two distinct sets of languages and tools have very different

semantics, programming model, and features sets, which makes porting appli-

cations between software and hardware time-consuming and error-prone. In

addition, using software programming frameworks and hardware design tools

require different knowledge and skill sets. As a result, it is difficult for pro-

grammers with only software expertise to use the hardware design tools, or

vice versa. It is desirable to have a single framework with a unified language

that both software programmers and hardware designers can use, which would

improve productivity, and expedite the adoption of accelerators.

71

We have shown in previous sections of this chapter that algorithms de-

scribed using a task-based parallel computation model can be mapped to effi-

cient hardware architectures. In this section, we show that the same description

can also be mapped to parallel software runtimes. Figure 3.9 shows the unified

flow that has both a parallel accelerator backend and a parallel software back-

end. Starting from a C++-based algorithm description, designers can use the

hardware flow (described in the previous section) to generate a parallel acceler-

ator, and can also use the software flow to generate parallel software that targets

the Threading Building Blocks (TBB) runtime. To achieve this, the framework

provides a library that turns task operations into calls to the TBB runtime. The

primary reason we choose a library-based approach over a language-based ap-

proach is that it does not require modifications to the compiler. We leverage

TBB’s support for continuation passing and its work-stealing runtime instead

of creating our custom runtime, which has two benefits. First, the TBB runtime

is highly optimized, which ensures that the generated parallel software is effi-

cient. Second, it enables the flow to take advantage of TBB’s extensive support

for various operating systems and ISAs.

3.5.1 CPPWD-TBB Library

The framework is able to generate both hardware and software from the same

CPPWD-based algorithm description by providing two implementations of the

task APIs. The task APIs are used for operations such as spawning child tasks

and returning arguments. Figure 3.10 shows the hardware and software imple-

mentation stacks. In the hardware implementation, the task APIs are translated

into messages sent and received on the worker’s ports. To keep the algorithm

72

C++-Based Algorithm Desc

CPPWD-TBB Library

TBB Runtime

SW Task API

messages on ports

function calls

C++-Based Algorithm Desc
HW Task API

messages on ports

Accelerator
Architecture

Hardware Stack Software Stack

Figure 3.10: Hardware and software implementation stacks.

description reusable, we implemented virtual ports in the software implementa-

tion of the workers, which are objects with read or write methods. We imple-

mented a CPPWD-TBB library that the worker communicates with by sending

and receiving messages on the virtual ports. The library then converts messages

into calls to the TBB runtime.

Here we describe the implementation of task APIs for the software backend.

• spawn is implemented by sending a child task message on the

task out virtual port of the worker. The CPPWD-TBB library re-

ceives and parses the task message, and calls the TBB runtime’s

tbb::task::allocate additional child of method to allocate

the child task, and then calls tbb::task::spawn to perform the spawn

operation.

• spawn next is similar to spawn, but the task is allocated using

tbb::task::allocate continuation instead.

• make successor is implemented by sending a successor task mes-

sage on the cont req virtual port of the worker. The CPPWD-TBB li-

brary receives and parses the message, and then calls the TBB runtime’s

tbb::task::allocate continuation method to allocate the succes-

73

Table 3.3: Programmability comparison. M: Manual. A: Assisted by the
compiler.

Step CPPWD TBB Cilk Plus

Algorithm Parallelization M M M

Code Restructuring M M A

Task Input/Output M M/A A

sor task.

• send arg is implemented by writing the argument value to the argument

slot pointed by a task’s continuation, without involving TBB.

3.5.2 Programmability

Here we describe the programmability of writing parallel programs using the

proposed unified framework, and compare it to native TBB and Cilk Plus.

To create a parallel program using the proposed unified framework, pro-

grammers need to write the code in a continuation passing style. Compared to

a sequential program, this involves three extra steps: (1) programmers need to

conceive an approach to parallelize the algorithm; (2) the program needs to be

restructured into several pieces (tasks), and the tasks need to be spawned and

synchronized using the task API; (3) programmers need to specify the input

and output data passed between the tasks. Table 3.3 shows whether these three

steps need to be manually performed or assisted by the compiler.

In all three frameworks, parallelizing the algorithm needs to be performed

manually, as none of them intend to perform automatic parallelization. In terms

74

of code restructuring, both our framework (using CPPWD) and TBB require the

programmers to perform the step manually because they are both library-based

approaches. In Cilk Plus, this step is assisted by the compiler. Programmers

only need to annotate the code with certain keywords, and the compiler fron-

tend automatically transforms the code. In terms of passing input/output data

between the tasks, both our framework and TBB (prior to C++11) require the

programmers to manually specify the data to be passed. TBB (C++11 and later)

leverages the lambda capture feature of C++11 to assist the programmers in

this step. In Cilk Plus, this step is automated by the compiler. This comparison

indicates that our framework is somewhat a lower-level framework compared

to TBB and Cilk Plus. However, we found that in practice this does not sig-

nificantly affect productivity. The reason is that the most challenging part of

creating a parallel program is usually algorithm parallelization, while the other

two steps are fairly simple and mechanical. In addition, when the parallel algo-

rithm uses parallel for, our framework also provides a convenient wrapper

that alleviates the need to perform code restructuring and task input/output

handling. Future work may also look into providing compiler support for our

framework to automate these two steps in the general case.

3.6 Evaluation

In this section, we present the evaluation results for the proposed accelerator

framework. We first present a hardware prototype of accelerators on today’s

FPGA platform. Then, in order to perform a more detailed study of the archi-

tecture, and to avoid the limitations of the current FPGA platform, we present a

simulation-based study of the accelerators in the context of a future integrated

75

CPU-FPGA SoC. Finally, we present an evaluation of the performance of paral-

lel software built using the unified description.

3.6.1 Benchmarks

We use a set of ten benchmark algorithms that cover a variety of application

domains, including linear algebra, graph search, sorting, combinatorial opti-

mization, image processing, and bioinformatics. Some of the benchmarks are

developed in-house, while others are adapted from benchmark suites such as

Cilk apps [40], Unbalanced Tree Search [77]. and MachSuite [92]. We coded par-

allel implementations of these algorithms using the unified description format

provided by our framework. Task granularity depends on application charac-

teristics, but is chosen to strike a balance between parallelization overhead and

load balancing. Table 3.4 summarizes the benchmarks and shows the charac-

teristics of each benchmark. Among them, the ones that are recursive, or have

nested or data-dependent parallelism are especially challenging to express in

existing accelerator design frameworks, but our framework allows writing these

algorithms easily.

Here we give a brief description of each benchmark algorithm, as well as the

approach we take to parallelize them:

1. nw implements the Needleman-Wunsch algorithm, which is a dynamic

programming algorithm that aligns two DNA sequences. The algorithm

fills values of a two-dimensional matrix, where the value of each element

depends on its neighbors on the north, west, and northwest. We paral-

lelize nw by blocking the matrix, and using continuation passing to con-

76

Table 3.4: Summary of benchmarks. PA: Parallelization Approach,
PF=parallel-for, FJ=fork-join, CP=continuation passing. R/N:
Recursive/Nested Parallelism. DP: Data-Dependent Paral-
lelism. MP: Memory Access Pattern. MI: Memory Intensity.

Name From PA R/N DP MP MI

nw In-house CP Yes Yes Regular Medium

quicksort In-house FJ Yes Yes Regular Medium

cilksort Cilk apps FJ Yes Yes Regular Medium

queens Cilk apps FJ Yes Yes Regular Low

knapsack Cilk apps FJ Yes Yes Regular Low

uts UTS FJ Yes Yes Regular Low

bbgemm MachSuite PF Yes No Regular Medium

bfsqueue MachSuite PF No No Irregular High

spmvcrs MachSuite PF No No Irregular High

stencil2d MachSuite PF No No Regular High

struct the task graph, similar to Figure 3.2(c).

2. quicksort implements the classic Quicksort algorithm, which is a di-

vide and conquer algorithm that recursively partitions an array into two

smaller arrays and sorts them. We use the Hoare partition scheme [52]

in our implementation, and use fork-join to parallelize across the divide-

and-conquer tree.

3. cilksort is a parallel merge sort algorithm first described in [9]. It re-

cursively divides an array into smaller arrays and sorts them, and also

performs the merging in parallel. When the sub-array size gets small, it

uses quicksort to sort the sub-array, which in turn partitions and sorts the

sub-arrays, and uses insertion sort when the sub-array size becomes suffi-

ciently small (tens of elements). We use fork-join to parallelize across the

77

divide-and-conquer tree.

4. queens solves the classic N-queens problem. We use fork-join to paral-

lelize searching of the solution space.

5. knapsack solves the 0-1 knapsack problem. Our implementation uses a

branch-and-bound algorithm, and is parallelized using fork-join.

6. uts is a benchmark that dynamically constructs and searches an unbal-

anced tree. The unbalanced nature of the tree stresses the load balancing

capability of the architecture. We use fork-join to parallelize across the

subtrees.

7. bbgemm is a matrix multiplication kernel that uses blocking to achieve

good memory locality [61]. We use a block size of 32 and parallelize the

loop nest with two nested parallel-for’s.

8. bfsqueue is a breadth-first search algorithm that uses a queue to store

frontier nodes. We parallelize across the frontier with a parallel-for loop.

9. spmvcrs is a sparse matrix-vector multiplication algorithm using com-

pressed row storage format. We parallelism across the matrix rows using

parallel-for.

10. stencil2d performs stencil computation on a 2D image. We break the

image into blocks and use parallel-for to parallelize across the blocks.

For each worker that is generated by HLS, we applied standard HLS opti-

mization techniques such as loop pipelining and unrolling, and use application-

specific local memory structures such as scratchpads and buffers to achieve high

internal memory bandwidth when possible. In that sense, a single PE in our ar-

chitecture can be considered to represent optimized accelerators designed using

today’s HLS tools without additional parallelization support.

78

For benchmarks that use fork-join or continuation passing, we also tried to

implement a version that only uses parallel-for, targeting the LiteArch. The

high-level idea is to use multiple rounds, with each round processing one level

of the task graph using a parallel-for, and at the same time constructing the next

level. This requires the tasks in the same level to be homogeneous. For bench-

marks that cannot be parallelized this way, we also tried to rewrite the algorithm

using a different approach if that helps mapping it to parallel-for. In the end,

we were able to implement parallel-for versions of nw, quicksort, queens

and knapsack, but not cilksort, due to the complexity and irregularity of

its dynamic task graph.

We also coded a parallel software implementation for each algorithm using

Intel Cilk Plus [4], and compiled with -O3 optimization and auto-vectorization

targeting NEON SIMD extensions.

3.6.2 Design Effort Comparison

Table 3.5 compares the lines of code between the Cilk Plus source code, the CP-

PWD source code and the generated Verilog RTL. The number of lines of the

generated Verilog code is intended to serve as a rough estimate of the design ef-

fort needed to describe the accelerators using a hardware description language.

Manual designs would have a different number of lines from the generated Ver-

ilog code, but is likely to be the same order of magnitude because manual de-

signs also need to implement the features needed to support dynamic work

generation and scheduling in order to be efficient. We can see that our frame-

work provides at least an order of magnitude reduction in code size because

79

Table 3.5: Lines of code (LOC) comparison between Cilk Plus, CPPWD
(the input to the framework), and the generated Verilog code.
Blank lines and comments are not counted.

Benchmark
Lines of Code Ratio

Cilk Plus CPPWD Verilog Verilog / CPPWD

nw 131 147 9,534 64.9

quicksort 87 121 8,960 74.0

cilksort 207 366 11,339 31.0

queens 68 80 7,863 98.3

knapsack 41 74 7,922 107.1

uts 92 108 8,801 81.5

bbgemm 28 136 10,206 75.0

bfsqueue 60 72 8,350 116.0

spmvcrs 30 64 8,401 131.3

stencil2d 51 136 10,235 75.3

the framework handles most of the low-level details, rather than requiring the

accelerator designers to handle them. In addition, writing high-level CPPWD

code typically requires less effort compared to writing RTL because the high-

level code is untimed. From the above analysis, we estimate that our framework

can provide an order of magnitude gain in accelerator design productivity com-

pared to manually writing RTL. This estimation is consistent with our experi-

ence using the framework: most of the benchmark accelerators can be created

in one or two days, rather than requiring several weeks as in RTL design.

Compared to writing parallel programs using Cilk Plus, designing acceler-

ators using the framework with CPPWD only requires a small amount of extra

code. As we discussed earlier, the extra code is mainly from the needed to man-

80

ually perform code restructuring and task input/output handling. There are a

few benchmarks that show a relatively large increase in code size compared to

Cilk Plus, most notably bbgemm and stencil2d. The reason is that for these

two benchmarks we implement algorithm-specific on-chip memory structures

(scratchpads and line buffers) in CPPWD in order to optimize the performance

of the accelerators, which lead to increased code size.

3.6.3 Hardware Prototype on Today’s FPGA

To demonstrate the proposed framework, we implemented a prototype system

using the Xilinx Zynq-7000 [7] FPGA SoC on Zedboard. The SoC includes two

ARM Cortex-A9 cores and an integrated FPGA fabric equivalent to Artix-7. We

implemented the FlexArch template for the FPGA and generated accelerators

using the flow described in Section 3.4.3. The Zynq-7000 platform has some

limitations compared to future integrated CPU-FPGA platforms that we envi-

sion (Figure 3.3). First, the FPGA fabric does not have a shared-cache interface

that can be used to implement coherent caches on the FPGA. As a result, we

implemented stream buffers instead of L1 caches to connect PEs to the L2 cache,

and a few benchmarks that rely on fine-grained cache accesses were not im-

plemented. Second, the bandwidth from the FPGA to the L2 cache is limited

by a single ACP port and is much lower than the CPU-to-L2 bandwidth. The

memory bandwidth becomes a bottleneck when scaling up the number of PEs.

We compare the performance of the accelerators to an optimized parallel

Cilk Plus implementation of the benchmarks running on the two ARM cores

on the SoC. Figure 3.11 shows the performance of FPGA accelerators with 4

81

nw
queens

knapsack uts

bbgemm
spmvcrs

stencil2d

geomean
0

2

4

6

N
or

m
al

iz
ed

 P
er

f

11.7 6.9
Cilk Plus 4-PE Accel 8-PE Accel

Figure 3.11: Accelerators performance compared to parallel software on
Zedboard.

PEs and 8 PEs, normalized to the parallel software implementation. The results

show that the 4-PE accelerators achieve up to 5.9x speedup over parallel soft-

ware (geomean 1.8x), and the 8-PE accelerators achieve up to 11.7x speedup

(geomean 2.5x). The results also reveal the limitations of the Zynq-7000 plat-

form. For example, the accelerators show a slowdown for spmvcrs, which is a

memory-bound benchmark, because the FPGA has lower memory bandwidth

to the L2 cache compared to the ARM cores. Similarly, there is little performance

improvement for nw, spmvcrs, and stencil2d when increasing the number

of PEs, again due to limited memory bandwidth.

3.6.4 Simulation Methodology

The limitations of today’s FPGA platform makes it difficult to evaluate the pro-

posed architecture in the context of future integrated CPU-FPGA platforms with

82

Table 3.6: Platform configuration.

Technology 28nm

CPU
ARM ISA, eight-core, four-issue, out-of-

order, 32 entries IQ, 96 entries ROB, 1GHz

CPU L1 Cache
L1I/L1D: 32KB, 2-way, 64B line size, 1-cycle

hit latency, next-line prefetcher

Accel logic In FPGA fabric, 200MHz

Accel 32KB, 2-way, 64B line size, 400MHz,

L1 cache 1-cycle hit latency, next-line prefetcher

L2 Cache
2MB, 8-way, 1GHz, 10-cycle hit latency,

shared between cores and accelerator

DRAM
Single-channel 64-bit DDR3-1600, 12.8GB/s

peak bandwidth

support for cache coherent accelerators [104] and higher memory bandwidth.

For the rest of the section, we present a simulation-based study, which allows

us to further explore the design space and perform a more detailed evaluation.

We model a future integrated CPU-FPGA SoC where the CPU and FPGA

share a cache-coherent memory system. The parameters of the platform are

shown in Table 3.6. We use gem5 [15] to model the integrated CPU-FPGA SoC.

To simulate the accelerators, we modified gem5 by integrating an RTL simulator

(Verilator) into gem5 as a ClockedObject that is ticked every cycle, similar to

gem5’s CPU models. We wrote adapters to perform synchronization between

gem5’s event-based components (memory-system) and the cycle-based acceler-

ator RTL simulator. In this way, we can perform detailed RTL simulations of

83

the accelerators, while retaining the flexibility in configuring the system com-

ponents such as cores, caches, interconnect, and DRAM.

We estimate FPGA resource utilization by synthesizing the RTL using Vi-

vado targeting Xilinx’s 7-series FPGA to obtain LUT/FF count, the number of

DSP slices, and the number of block RAMs. We estimate the resource utilization

of the accelerator caches using numbers from Xilinx’s cache IP [1].

To estimate the energy of the accelerators, we run Vivado’s power estimation

tool on the synthesized netlist using signal activity factors from RTL simulation.

We model the energy of the cores using McPAT [63], using event statistics from

gem5 simulations.

3.6.5 Performance Results

Scalability

Here we present the scalability of the proposed accelerator architecture using

parallel speedup, which is the speedup of a n-PE implementation over a single

PE implementation. In our experiments, we configure each tile to have 4 PEs

and simulate up to 8 tiles (32 PEs) for both FlexArch and LiteArch. For com-

parison, we also show the scalability of the Cilk Plus baseline on 1 to 8 cores.

Because a PE is much smaller and lower-power than an out-of-order core, we

can fit more PEs than cores in the same area and power budget. On the mem-

ory system side, the 8-tile and 8-core configurations have the same number of

L1 caches. Table 3.7 and Table 3.8 shows the scalability results for the Cilk Plus

software implementation and the accelerators, respectively. Comparing the soft-

84

Table 3.7: Scalability of Cilk Plus. The numbers are the speedup of a n-core
implementation over a single core implementation.

Benchmark
Cilk Plus on OOO CPU

1-C 2-C 4-C 8-C

nw 1.00 1.74 3.21 5.54

quicksort 1.00 1.91 3.42 5.40

cilksort 1.00 1.98 3.78 7.05

queens 1.00 1.99 3.92 7.65

knapsack 1.00 2.05 3.92 8.20

uts 1.00 1.75 2.81 3.91

bbgemm 1.00 1.99 3.85 7.04

bfsqueue 1.00 1.77 3.11 4.64

spmvcrs 1.00 1.95 3.50 5.45

stencil2d 1.00 1.99 3.85 7.04

geomean 1.00 1.91 3.52 6.04

ware and accelerators results, the accelerators achieve similar speedups (from 1

to 8 cores/PEs) compared to Cilk Plus, which is a state-of-the-art task-based par-

allel programming framework and runtime. In addition, the accelerators con-

tinue to get more speedups with more PEs for most benchmarks. This shows

that the proposed accelerator architecture is effective in harnessing the paral-

lelism in applications.

Comparing the two accelerator architectures, LiteArch accelerators match

the scalability of the FlexArch accelerators when algorithms map naturally

to the data-parallel pattern (bbgemm, bfsqueue, spmvcrs and stencil2d).

However, for benchmarks that have dynamic data-dependent parallelism or are

irregular (parallelized with fork-join or explicit continuation passing), FlexArch

85

Table 3.8: Scalability of the accelerators. The numbers are the speedup of
a n-PE implementation over a single PE implementation.

Benchmark
Flex Accelerator Lite Accelerator

1-PE 2-PE 4-PE 8-PE 16-PE 32-PE 1-PE 2-PE 4-PE 8-PE 16-PE 32-PE

nw 1.00 1.98 3.69 7.11 13.23 21.19 1.00 1.81 3.09 5.10 7.54 9.90

quicksort 1.00 1.89 3.24 5.15 6.52 6.81 1.00 1.61 2.54 3.46 4.55 5.17

cilksort 1.00 1.99 3.50 6.94 13.66 26.20 N/A N/A N/A N/A N/A N/A

queens 1.00 1.89 3.10 6.20 12.12 24.20 1.00 2.00 3.96 7.45 12.08 13.21

knapsack 1.00 1.97 3.22 6.13 12.55 23.94 1.00 1.93 3.80 7.64 15.15 29.99

uts 1.00 1.95 3.66 6.50 11.32 15.64 1.00 1.92 3.52 5.76 7.51 7.44

bbgemm 1.00 1.99 3.88 7.50 13.38 17.48 1.00 1.95 3.42 6.39 11.29 18.27

bfsqueue 1.00 1.78 3.36 6.13 9.93 12.40 1.00 1.56 4.23 6.95 9.99 12.55

spmvcrs 1.00 1.99 3.59 6.86 13.16 16.51 1.00 1.93 2.91 5.52 10.16 17.42

stencil2d 1.00 1.99 3.17 6.22 12.12 20.13 1.00 1.98 2.73 5.36 10.32 17.35

geomean 1.00 1.94 3.43 6.44 11.57 17.35 1.00 1.85 3.31 5.82 9.37 12.98

accelerators generally achieves better scalability, except for knapsack. The

knapsack implementation on LiteArch uses a different algorithm that sacrifices

algorithmic efficiency in order to map to parallel-for. Though it has good scal-

ability, we will see later that the absolute performance is actually much lower.

These results indicate that LiteArch is adequate to support regular data-parallel

algorithms. FlexArch, on the other hand, is a better fit for most other parallel al-

gorithms. This is because although some of these algorithms can be rewritten to

map to LiteArch, their dynamic and irregular nature makes the implementation

less efficient, due to less effective load balancing and/or reduced algorithmic

efficiency.

The results also show that some benchmarks have better scalability than oth-

86

ers. For example, the two sorting algorithms, cilksort and quicksort, show

similar speedups when there are only a small number of cores/PEs. However,

when the number of cores/PEs increases, cilksort can continue to scale its

performance, achieving 26.20x speedup with 32 PEs using FlexArch, while the

performance of quicksort quickly tapers off. The reason is that these two al-

gorithms have a different amount of dynamic parallelism. quicksort has a

significant non-parallelizable portion. Specifically, the partitioning step is per-

formed serially, thus the achievable speedup is limited by Amdahl’s law. In

contrast, cilksort (a.k.a. parallel merge sort) generates a large number of par-

allel tasks during execution, hence it achieves better scalability.

The results also indicate that the FlexArch architecture achieves good load

balancing using its hardware-based work stealing mechanism. For example,

uts (Unbalanced Tree Search) is particularly difficult to load balance and re-

quires frequent work stealing operations. Cilk Plus only achieves 3.91x speedup

with 8 cores. In comparison, the FlexArch accelerator achieves 6.50x speedup

with 8 PEs, and is able to continue to scale the performance with more PEs,

which demonstrates the efficiency of the hardware-based work stealing mecha-

nism.

Normalized Performance

Figure 3.12 shows the performance of FPGA accelerators normalized to a sin-

gle out-of-order core. The horizontal line represents the performance of parallel

software using Cilk Plus running on eight cores. The crosspoint represents the

number of PEs that is needed to achieve the performance of the 8-core parallel

software implementation. The results show that the accelerators outperform the

87

W1 2 4 8 16 32
0

20

40

P
er

f.
vs

 s
in

gl
e

co
re

nw
Flex Accel Lite Accel

W1 2 4 8 16 32

2

4

quicksort

W1 2 4 8 16 32
0

10

20

P
er

f.
vs

 s
in

gl
e

co
re

cilksort

W1 2 4 8 16 32
0

50

queens

W1 2 4 8 16 32

0

25

50

P
er

f.
vs

 s
in

gl
e

co
re

knapsack

W1 2 4 8 16 32
0

20

uts

W1 2 4 8 16 32
0

10

20

P
er

f.
vs

 s
in

gl
e

co
re

bbgemm

W1 2 4 8 16 32

10

20

bfsqueue

W1 2 4 8 16 32
0.0

2.5

5.0

P
er

f.
vs

 s
in

gl
e

co
re

spmvcrs

W1 2 4 8 16 32
0

20

stencil2d

Figure 3.12: Normalized accelerator performance. The x-axis is the num-
ber of workers (PEs). The y-axis is performance normalized
to a single OOO core. The horizontal bar indicates the perfor-
mance of an eight-core Cilk Plus implementation.

88

8-core software implementation for most benchmarks. When using 32 PEs, the

FlexArch accelerators are up to 9.1x (geomean 4.0x) faster than eight cores, and

up to 69.5x (geomean 24.1x) faster than a single core. The accelerators cannot

significantly outperform the 8-core software implementation for quicksort

and spmvcrs. As discussed earlier, quicksort has a significant serial por-

tion, so the processor with a high frequency runs faster. spmvcrs is limited

by memory bandwidth, as a result all implementations eventually reach similar

performance.

The LiteArch accelerators achieve similar performance as the FlexArch ac-

celerators for data-parallel benchmarks. For most other benchmarks, FlexArch

significantly outperforms LiteArch, especially with a large number of PEs. Also

note that the performance difference of knapsack comes from the algorithmic

inefficiency as discussed earlier.

These results also demonstrate that FPGA accelerators need to exploit par-

allelism in order to provide performance benefits over parallel software. Tra-

ditional HLS tools that use sequential C/C++ code as input can only generate

accelerators that roughly match the performance of a single PE, which is often

slower than parallel software. Our framework enables mapping parallel algo-

rithms to FPGA easily and achieves compelling performance (and shown later,

energy) advantages over parallel software.

Execution Time Breakdown

Figure 3.13 shows the execution time breakdown of the FlexArch accelerators.

The percentage is calculated by aggregating the execution time across all PEs.

89

P1 2 4 8 16 32
0

50

100

P
er

ce
nt

ag
e

Ti
m

e

nw
Busy Wait Steal

P1 2 4 8 16 32
0

50

100
quicksort

P1 2 4 8 16 32
0

50

100

P
er

ce
nt

ag
e

Ti
m

e

cilksort

P1 2 4 8 16 32
0

50

100
queens

P1 2 4 8 16 32
0

50

100

P
er

ce
nt

ag
e

Ti
m

e

knapsack

P1 2 4 8 16 32
0

50

100
uts

P1 2 4 8 16 32
0

50

100

P
er

ce
nt

ag
e

Ti
m

e

bbgemm

P1 2 4 8 16 32
0

50

100
bfsqueue

P1 2 4 8 16 32
0

50

100

P
er

ce
nt

ag
e

Ti
m

e

spmvcrs

P1 2 4 8 16 32
0

50

100
stencil2d

Figure 3.13: Execution time breakdown for FlexArch accelerators. Busy:
PE is actively processing a task. Wait: PE is waiting to steal a
task. Steal: PE is performing task stealing.

90

Execution time is divided into three components: busy, wait, and steal. The

busy component represents that a PE is actively processing a task. The wait

component represents that a PE is waiting to initiate task stealing. This is be-

cause task stealing is throttled when there are few available tasks in the system

to prevent congestion in the work stealing networks. The steal component rep-

resents that a PE is performing task stealing. The overall trend seen from the

graphs is that as we increase the number of PEs, the percentage of time spent in

work stealing operations (wait and steal) increases. There are mainly two rea-

sons. First, as we increase the number of processing elements, the serial portion

of a program will become a larger percentage of overall execution time accord-

ing to Amdahl’s law. This shows up as time spent in work stealing because

the PEs repeatedly try to steal work from each other but there are simply not

enough parallel tasks available in the system. Second, as the number of PEs

increases, it becomes more challenging to balance the load on the PEs, and thus

require more work stealing operations.

Among the benchmarks, quicksort spends the most time in work stealing

operations when increasing the number of PEs because it has a significant serial

portion. uts and spmvcrs also spend a sizeable amount time in work steal-

ing because of the irregularities in the computation. nw and bbgemm spends

more time in work stealing for large accelerator configurations (32-PE) because

there is not enough parallelism to keep all PEs busy. Note that we use the

same problem size for all accelerator configurations in order to keep the results

consistent with the performance numbers shown earlier. In reality, as pointed

out in Gustafson’s law [47], programmers tend to use larger problem sizes as

more computing resources become available. The reasoning is that program-

mers will use the improved computing power to solve larger problems in the

91

same amount of time, rather than trying to minimize the execution time for a

fixed-size problem. Because the available parallelism in an application grows

with the problem size, we expect that in reality less percentage of execution

time will be spent in the work stealing operations compared to shown in the

figure for large accelerator configurations.

Task Queue and P-Store Occupancy

Figure 3.14 shows the maximum number of occupied entries in any task queue

or P-Store at any point of execution for the FlexArch accelerators. Most bench-

marks only need a small number of task queue and P-Store entries. This is

because when the task graph is balanced, the space required is logarithmic to

the problem size, and thus is small even for very large problems. The only

benchmark that requires significantly more space is uts, because its task graph

is highly unbalanced. Nonetheless, the number of entries it requires can still

easily fit into on-chip memories. For example, we use the block RAMs on FP-

GAs to implement the task queues and P-Stores. The smallest configuration of

the block RAMs has 512 entries [116], which is already sufficient to meet the re-

quirements of all benchmarks we experimented with. When needed, the blocks

RAMs can also be sized up to support larger task queue and P-Store sizes.

Another trend that we can see from the figure is that increasing the num-

ber of PEs does not require larger task queues. This confirms the space bound

property discussed in Section 3.2.3 and Section 3.3.1, which states that the total

space required for a parallel execution with P processing elements is at most

S1P, where S1 is the space required for a serial execution. Because the total

number of available task queue entries grows with the number of PEs, we can

92

P1 2 4 8 16 32
0.0

0.5

1.0

O
cc

up
ie

d
en

tri
es

nw
Task Queue P-Store

P1 2 4 8 16 32
0

25

50

quicksort

P1 2 4 8 16 32
0

20

40

O
cc

up
ie

d
en

tri
es

cilksort

P1 2 4 8 16 32
0

20

queens

P1 2 4 8 16 32
0

25

50

O
cc

up
ie

d
en

tri
es

knapsack

P1 2 4 8 16 32
0

200

400

uts

P1 2 4 8 16 32
0

10

O
cc

up
ie

d
en

tri
es

bbgemm

P1 2 4 8 16 32
0

20

40

bfsqueue

P1 2 4 8 16 32
0

10

20

O
cc

up
ie

d
en

tri
es

spmvcrs

P1 2 4 8 16 32
0

10

20

stencil2d

Figure 3.14: Maximum Task Queue and P-Store Occupancy for FlexArch
accelerators. The x-axis is the number of PEs. The y-axis is
the maximum number of occupied entries in any task queue
or P-store at any point of execution.

93

Table 3.9: FlexArch accelerators resource utilization. Each tile consists of
four PEs and a cache. DSPs are shown in the number of DSP48
slices. BRAMs are shown in the number of RAM18’s (each
RAM36 counts as two RAM18’s).

Benchmark
Flex PE Flex Tile (incl. Cache)

LUT FF DSP RAM LUT FF DSP RAM

nw 1487 1547 3 7 8914 8668 12 51

quicksort 1828 1484 0 6 10618 8484 0 47

cilksort 5961 3785 0 8 27233 17622 0 58

queens 549 535 0 4 5744 4684 0 40

knapsack 737 770 5 5 6083 5674 20 45

uts 2227 2216 0 5 11510 11438 0 44

bbgemm 1551 1789 15 19 9671 9620 60 100

bfsqueue 1481 1190 0 6 9353 7348 0 48

spmvcrs 1441 1273 3 13 9303 7660 12 76

stencil2d 1741 2334 12 10 10316 11905 48 64

increase the number of PEs without increasing the number of entries in each

PE’s task queue.

The space bound also applies to the P-Store. In our experiments, each tile

has up to four PEs. Because the P-Store is shared among the PEs in a tile, as

we increase the number of PEs from one to four, the P-Store occupancy grows

because of the increasing sharing. As we further increase the number of PEs,

the P-Store occupancy does not grow further because of the space bound. Note

that nw does not use the P-Store, so the occupancy is always zero.

94

Table 3.10: LiteArch accelerators resource utilization. Each tile consists of
four PEs and a cache.

Benchmark
Lite PE Lite Tile (incl. Cache)

LUT FF DSP RAM LUT FF DSP RAM

nw 1273 1346 1 4 6431 6838 4 36

quicksort 1857 1490 0 2 8665 7387 0 28

cilksort N/A N/A N/A N/A N/A N/A N/A N/A

queens 704 606 0 0 4164 3851 0 20

knapsack 575 466 0 0 3591 3295 0 20

uts 2541 2158 0 0 10997 10063 0 20

bbgemm 1019 1361 15 14 5401 6736 60 76

bfsqueue 887 822 0 1 4901 4791 0 24

spmvcrs 875 905 3 8 4777 5119 12 52

stencil2d 1200 1964 12 5 6175 9359 48 40

3.6.6 Resource Utilization

Table 3.9 and Table 3.10 shows the per-PE and per-tile resource utilization of the

FlexArch and LiteArch accelerators, respectively. Each tile consists of four PEs

and a cache. The DSP blocks are mainly used to implement multipliers, and

the BRAMs are used as local scratchpads and buffers, task storage, and caches.

The results show that the LiteArch accelerators generally use fewer resources

than the FlexArch accelerators. The reduction is most apparent for regular data-

parallel benchmarks (bbgemm, bfsqueue, spmvcrs, and stencil2d) whose

tasks graphs can be determined statically. The reason is that these benchmarks

consist of a single parallel range whose task graph can be determined statically,

thus the LiteArch accelerators avoid the cost of dynamically splitting the range

and generating the task graph in hardware, as done in the FlexArch accelera-

95

tors. As a result, LiteArch is a good fit for data-parallel benchmarks. On the

other hand, the resource reduction by using LiteArch for other benchmarks is

less significant, as the task graphs need to be constructed dynamically in both

architectures. The FlexArch architecture is a better fit for these benchmarks, due

to its ability to perform efficient load balancing and thus achieve significantly

better performance.

To put the resource utilization numbers into context, we studied how many

PEs can be mapped to typical FPGA devices. We experimented with two FPGA

devices: a low-cost FPGA (Artix XC7A75T) similar to the one on Zedboard, and

a mainstream FPGA (Kintex XC7K160T). The low-cost FPGA can fit on average

4 tiles (16 PEs) for FlexArch, and 5 tiles (20 PEs) for LiteArch. The mainstream

FPGA can fit 8 tiles (32 PEs) for most benchmarks (except for cilksort) for

both FlexArch and LiteArch.

3.6.7 Power and Energy Efficiency

Figure 3.15 shows the performance and energy efficiency of the accelerators

(16-PE configuration) normalized to a Cilk Plus implementation on eight out-

of-order cores. The results show that the proposed accelerators are lower power

and more energy efficient for all benchmarks, with most benchmarks showing

more than 10x gain in energy efficiency. Comparing the two accelerator archi-

tectures, there exists a clear trend in the performance/energy efficiency profile:

FlexArch usually achieves better performance, while LiteArch often has better

energy efficiency. On average, FlexArch achieves a normalized energy efficiency

of 11.8x compared to the out-of-order cores, while LiteArch achieves 15.3x.

96

1 10
Normalized Performance

1

10

100

N
or

m
al

iz
ed

 E
ne

rg
y

E
ffi

ci
en

cy

8-core OOO Flex Accel Lite Accel

Figure 3.15: Normalized performance and energy efficiency. Energy ef-
ficiency is the inverse of energy consumption. Both perfor-
mance and energy efficiency are normalized to the Cilk Plus
implementation on 8 OOO cores. Points to the right of the
vertical line have better performance. Points above the hor-
izontal line have better energy efficiency. The diagonal line
represents the iso-power line. Points above the diagonal line
have lower power. Points for the same benchmark are linked.
Note that both axes are in log scale.

3.6.8 Cache Size Customization

In our evaluation, the accelerator L1 cache (tile cache) are built using the BRAMs

in the FPGA fabric. The size of the cache can be customized according to appli-

cation characteristics. For benchmarks that are not memory intensive, or have

good locality, the cache sizes can be made smaller to reduce BRAM usage with-

out significantly degrading performance. Figure 3.16 shows the performance

of the FlexArch accelerators (16-PE configuration) when varying the L1 cache

size from 4kB to 32kB. The benchmarks that have an irregular memory access

pattern (bfsqueue and spmvcrs) show the largest performance loss. nw and

97

bbgemm also showed some performance loss because of the reduced tempo-

ral reuse with smaller cache sizes. The other benchmarks perform relatively

well even with a small cache size. Among them, cilksort, quicksort, and

stencil2d have good locality, and the other three have relatively low memory

intensity.

nw
quicksort

cilksort
queens

knapsack uts

bbgemm
bfsqueue

spmvcrs

stencil2d

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

f

4kB 8kB 16kB 32kB

Figure 3.16: Performance when varying accelerator L1 cache size.

3.6.9 Parallel Software with Unified Description

The benchmark applications presented earlier in this evaluation are already

written in the unified description format. The only exception is UTS, which con-

tains an RTL component for SHA-1 calculation. We compiled all benchmarks

except for UTS with the CPPWD-TBB library and the TBB runtime to obtain

the executables. To evaluate the performance of parallel programs built using

the unified description, we compare them with two other parallel software im-

plementations. The first is the Cilk Plus implementation described earlier. The

second is a native TBB implementation we coded without using the unified de-

scription. All three implementations are compiled with the same compiler flags

98

(-O3 optimization and auto-vectorization).

nw
quicksort

cilksort
queens

knapsack

bbgemm
bfsqueue

spmvcrs

stencil2d

geomean
0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 P

er
f

Cilk Plus TBB CPPWD-TBB

Figure 3.17: Performance comparison between parallel software imple-
mentations.

Figure 3.17 compares the performance of all implementations normalized to

Cilk Plus. Overall, Cilk Plus has the highest performance. The performance of

the implementation using the unified description (CPPWD) on TBB runtime is

about 5% lower than Cilk Plus, while native TBB is about 18% lower. Native

TBB has lower performance likely because it uses stalling scheduling, which is

known to less efficient [94].

For most benchmarks, the performance of all implementations is similar.

There are a few exceptions. Cilk Plus has much higher performance than both

TBB and CPPWD-TBB on knapsack, likely because it uses continuation steal-

ing, which has lower overhead. CPPWD-TBB has higher performance than Cilk

Plus and TBB on queens and bfsqueue. This is because the CPPWD ver-

sion initially written for hardware implementation copies data into local arrays,

which turns out to have better locality when implemented in software as well.

99

In summary, the evaluation results show that the performance of the unified

description running on TBB runtime is competitive with state-of-the-art task-

based parallel programming frameworks.

100

CHAPTER 4

PREDICTIVE DVFS FRAMEWORK FOR ENERGY EFFICIENCY

4.1 Introduction

This chapter proposes an architectural framework that enables accelerators to

perform intelligent dynamic voltage and frequency scaling (DVFS) to achieve

good energy-efficiency for interactive and real-time applications. Energy sav-

ings are achieved by accurately adjusting the voltage and frequency levels of

accelerators to match the computation demand. One key challenge of perform-

ing DVFS is to accurately predict the computation demand ahead of time. The

framework automatically generates application-specific predictors by analyz-

ing the source code of accelerators and build prediction models using machine

learning techniques, which removes the need to manually tune the predictor,

and at the same time achieves better accuracy and more energy savings.

Modern SoCs often contain hardware accelerators that interacts with the

user or perform real-time processing of tasks, such as video codecs, image sig-

nal processors in cameras, and computer vision accelerators in self-driving cars.

Although more energy-efficient than general-purpose processors, the power

consumption of hardware accelerators is becoming a concern as applications

demand more computational power. For example, the DaDianNao machine

learning accelerator consumes 15.97W [25]. The FPGAs used to accelerate the

Bing web search engine consumes up to 22.7W per chip [87], and the FPGAs

used to accelerate neural networks in Microsoft’s datacenters consume 125W

per chip [31]. The power consumption of accelerators is especially a concern for

battery-powered mobile devices, where power directly impacts battery life, as

101

well as datacenters, where power not only affects electricity costs, but also af-

fects cooling and power distribution costs. Fortunately, the interactive nature of

many accelerated applications, as well as the variations in the workload, means

that the accelerators do not need to operate at the peak performance levels at

all times. Thus, it is important to dynamically adjust the performance level of

accelerators to achieve good energy efficiency.

Dynamically adjusting the performance level is subject to a few constraints.

Accelerators used in interactive or real-time applications have response time re-

quirements. Interactive applications are required to respond to user inputs by a

certain deadline for responsiveness. Real-time applications such as frame-based

applications need to process each frame before the screen refresh deadline, oth-

erwise the frame will be dropped, and the application will feel sluggish. In

both cases, meeting response time requirements is essential for good user expe-

rience. On the other hand, finishing tasks earlier than the response time require-

ments does not improve user experience due to the limits of human perception.

In other words, there often exists slack in interactive or real-time applications,

which can be exploited to improve energy-efficiency by lowering the perfor-

mance level of the system, using techniques such as dynamic voltage and fre-

quency scaling (DVFS). Unfortunately, today’s software/hardware abstractions

do not offer applications an easy way to express their timing requirements. As

a result, the hardware accelerators/IP blocks are usually agnostic to the timing

requirement of the applications, and operate in best-effort mode. When there

is a high variation in the workload, the hardware accelerators need to operate

conservatively to make sure they meet deadlines even in the worst-case. This

means they often run at unnecessarily high performance levels compared to

what is needed to meet deadlines in the average case, which leads to wasted

102

energy.

Various techniques exist for exploiting such slack in the software part of

applications, using either reactive approaches [18, 30, 45, 68, 83] or predictive

approaches [46, 53, 119, 120]. However, exploiting slack to inform fine-grained

DVFS has not been studied much for hardware accelerators.

In this chapter, we present an architectural framework for automatically

generating fine-grained DVFS controllers for accelerators that exploits input-

dependent variations. We observe that input-dependent control decisions are

the major source of execution time variations. A good estimate of an accelera-

tor’s execution time can be obtained if its control decisions for a certain input are

known. In order to do this, we propose an automatic flow to generate a minimal

version of a hardware accelerator from its RTL description, which computes the

control decision features given an input. A model based on convex optimization

is developed and trained to map these features to the accelerator’s execution

time and the most efficient DVFS level to run the accelerator at.

Our approach is general and applicable to a wide range of hardware ac-

celerators. We implemented and tested this predictive DVFS framework on a

number of accelerators including video decoding, image processing, encryp-

tion, physics computation, etc. Our results show the framework can generate

DVFS controllers that make more accurate predictions and achieve more energy

savings than manually designed controllers, while being fully automatic.

The rest of this chapter is organized as follows. Section 4.2 discusses exe-

cution time variations in hardware accelerators and existing DVFS controllers.

Section 4.3 describes our predictive DVFS framework, including the features

103

used, prediction model, method to generate the predictor, and DVFS model.

We also include a case study on using the framework for an example accelera-

tor. Section 4.4 discusses our evaluation methodology, experimental setup, and

evaluation results.

4.2 Fine-grained DVFS for Hardware Accelerators

4.2.1 System Setup

The system we consider in this chapter consists of general-purpose processor

cores, caches, main memory, and hardware accelerators. The cores and acceler-

ators are loosely coupled. The accelerators access memory through the shared

last-level cache or memory bus. Each accelerator contains computation logic,

and often internal scratchpad memories to store the working set. We assume

each accelerator’s DVFS level can be controlled individually.

4.2.2 Tasks and Jobs

Here we define some terminologies used in this chapter. A task is a piece of

work that has an associated deadline. For example, for a video player, decoding

and rendering a frame is a task. In this case, the deadline associated with a task

is determined by the frame rate of the video. A job is a dynamic instance of

a task. For example, decoding a video at 60fps executes 60 jobs every second.

Figure 4.1 shows a sequence of jobs for a task.

104

Timedeadline deadline deadline deadline

Job 0 Job 1 Job 2 Job 3

Figure 4.1: A sequence of jobs for a task.

4.2.3 Execution Time Variation

The execution time for each job can vary depending on the job’s input. For ex-

ample, Figure 4.2 shows the execution time for a hardware H.264 decoder when

decoding three video clips of the same resolution. We can see that even though

all frames have the same resolution, there is a large variation in job execution

time for frames in different videos, or even between frames in the same video.

The reason for such large execution time variations is that for each frame, de-

pending on the content in it, the H.264 algorithm chooses different modes to

encode each macroblock in a frame, which leads to different computation com-

plexity for decoding, and thus different execution time. Note that if we take

into account videos of different resolutions, the execution time variation will be

even larger. If we can lower the frequency for frames with shorter execution

time, significant energy savings can be achieved.

However, setting an appropriate DVFS level for each job is not easy. The

large and irregular variations in workload make it difficult to predict the next

job’s execution time. Without accurate prediction, the DVFS controller has to be

conservative and use higher DVFS levels to avoid deadline misses, missing op-

portunities for energy reduction. Otherwise, the DVFS controller risks missing

deadlines when there is a sudden increase in job execution time.

105

0 50 100 150 200 250 300
Job

5

6

7

8

9

10

11

12

E
xe

cu
tio

n
Ti

m
e

(m
s)

coastguard
foreman
news

Figure 4.2: Execution time of H.264 decoder for three video clips at 60fps.
Each point is one job (frame).

4.2.4 Current Approaches to DVFS

DVFS is widely used for reducing the energy of computation. The key idea of

DVFS is to reduce voltage and frequency to provide “just enough” performance

to the application. An important part of a DVFS controller is the prediction of

future workload, which allows the voltage and frequency to be lowered to the

minimum required level while satisfying response time requirements.

For applications without response time requirements, simple interval-based

scheduling algorithms [111] can be used. These algorithms usually divide time

into fixed-length intervals and measure the utilization of the previous interval

and set DVFS level for the next interval. Since response time is not a require-

ment, some level of performance degradation caused by workload mispredic-

tion can be tolerated. These algorithms are widely used in operating systems.

106

For example, the Linux power governors [18] are interval-based.

For applications with response time requirements, misprediction has to be

minimized since it degrades the quality-of-service (QoS). There are many ap-

proaches in literature and industry practice to perform DVFS under response

time requirements. The following summarizes approaches that can be applied

to hardware accelerators.

Table-based: Some hardware accelerators, including the Multi-Format

Codec (MFC) in Samsung Exynos Series SoCs, use a lookup table to determine

the DVFS level [2]. The table is addressed by a coarse-grained parameter, such

as the resolution of a video. Before decoding a video, the driver will look into

the table and set a DVFS level for the entire video sequence. Researchers have

also studied using the type of frames as inputs to the table [105]. However, these

approaches do not take into account fine-grained job-to-job execution time vari-

ations. Essentially, these approaches set DVFS levels to the worst case for that

coarse-grained parameter used to index the table. As can be seen in Figure 4.2,

though all jobs have the same coarse-grained parameter (resolution in this case),

most jobs have much shorter execution time than the worst-case. Thus the

coarse-grained approach misses opportunities for energy reduction.

Reactive Control: A number of previous studies proposed using reactive

control approaches to adjust DVFS levels. Some studies investigated using job

execution time history to predict future job execution time, and set DVFS levels

accordingly [30, 74]. Others proposed using control theory-based approaches,

such as PID control [45, 68, 83]. Most of these studies target software-based sys-

tems, but some of them also consider hardware accelerators [74, 105]. These

approaches are simple to implement, and work well for applications whose ex-

107

0 5 10 15 20 25 30 35
Job (Frame)

5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

E
xe

cu
tio

n
Ti

m
e

(m
s)

actual PID

Figure 4.3: Actual execution time and execution time predicted by PID
controller for H.264.

ecution time varies slowly with time. However, many applications and accel-

erators do not fall into this category. For applications with rapid changes in

job-to-job execution time, reactive decisions to adjust DVFS levels tend to lag

behind actual changes, leading to deadline misses. Figure 4.3 shows an exam-

ple how a PID-based controller mis-predicts job execution time for H.264 video

decoding. When actual execution time shows spikes occasionally, the PID con-

troller’s prediction lags behind by one frame, causing one under-prediction and

one over-prediction, which leads to one job missing deadline and one job run-

ning at unnecessarily high frequency around the spike. Apart from lagging

behind in decision making, reactive control approaches can not be applied in

some cases. For example, when browsing a website, the images processed by

the JPEG decoding accelerator usually do not show correlation with previous or

next images, rendering any reactive control approaches ineffective.

Predictive Control: There have been a few studies that looked at using pre-

dictive approaches to predict execution time and set DVFS levels accordingly.

108

The target applications include interactive games [46], video players [95], web

browsers [119, 120] and servers [53]. Predictive control has been shown to out-

perform reactive control for these applications. However, all of these studies

target software-based systems. Moreover, these approaches use application-

specific features for prediction, which require domain-specific knowledge and

manual effort to identify and obtain. Predictive control of DVFS for hardware

accelerators is largely unexplored. As more and more hardware accelerators

are deployed in applications today, it is necessary to take them into account

in controlling DVFS. In this chapter, we propose a predictive DVFS framework

for hardware accelerators. In addition, our prediction framework uses features

automatically extracted from hardware, which eliminates the need for domain-

specific knowledge or manual effort in obtaining features.

4.3 Predictive DVFS Framework for Hardware Accelerators

In this section, we propose a framework for controlling accelerator DVFS based

on execution time prediction. At high level, our goal is to predict the lowest

DVFS level each job can run at without violating response time requirements.

This can be done in two steps: first, we predict the execution time for each job at

a nominal frequency (i.e. without doing DVFS). After that, we predict what the

execution time would be at each DVFS level, and choose the lowest level that

meets response time requirements.

Figure 4.4 illustrates how accelerators operate with predictive DVFS. For

each job, a predictor is run first to obtain an estimate of the execution time of the

job. Then the best DVFS level is set according to predicted execution time. Af-

109

Timedeadline deadline

Job 0 Job 1

Timedeadline deadline

Job 0 Job 1

Predict Execution Time and Set DVFS

Figure 4.4: Operation of predictive DVFS.

ter frequency and voltage change stabilizes, the accelerator’s main logic starts

execution. Figure 4.5 shows the block diagram of an accelerator with execution

time prediction-based DVFS controller. For each job, the predictor informs the

clock generator and voltage regulator the frequency and voltage to be used. Ac-

cess to the scratchpad memory is time-multiplexed between the predictor and

the main computation logic. Although in our implementation the predictor di-

rectly controls DVFS circuitry, the control can also be done in software through

the operating system.

Logic

Scratchpad MemoryVin

AcceleratorClkin

Voltage
Regulator

Clock
Generator

Predictor

Figure 4.5: Accelerator with execution time prediction-based DVFS.

We have the following design goals for the DVFS framwwork:

• Look-ahead: Instead of reacting to changes in job execution time, the

110

Instrument
Features

Accel
RTL

Instrumented
Accelerator

RTL
Simulation

Jobs Input Data

Feature Values
Execution Time

Hardware
Slicing

Function of
Selected Features

Generate Execution
Time Model

Hardware
Slice

Design
Time

Job
Input

Job
Features

Execution
Time Model

Job
Execution

Time

DVFS
Model

DVFS
Level

Online

Figure 4.6: Execution time prediction flow.

DVFS controller looks ahead into upcoming jobs and predicts what the

execution time would be before actually running the jobs.

• General: The DVFS framework should be general and applicable to a wide

range of accelerators. To this end, the framework does not use application-

specific knowledge.

• Automated: The DVFS controller should be generated by an automated

flow with minimal manual effort.

• Low overhead: The DVFS controller should have low overhead in terms

of area and energy, or increased design complexity.

Figure 4.6 shows the high-level flow for our DVFS framework based on ex-

ecution time prediction. It consists of two parts. The offline part works during

the design process of the accelerator to generate the predictor. The online part

shows the operation of the predictor during accelerator execution.

Although we only investigate DVFS in this chapter, this approach can also

111

be applied to other methods for performance-energy trade-off, such as dynam-

ically reconfiguring accelerators to different performance-energy points, etc.

4.3.1 Source of Execution Time Variation

Control Unit

Datapath

Request Response

Data In Data Out

Accelerator Logic

Figure 4.7: Control-Datapath structure of an accelerator.

In Section 4.2.3, we showed that accelerators can have significant input-

dependent execution time variations. Here we describe where these variations

come from. Figure 4.7 shows a typical high-level structure of an accelerator.

It mainly consists of two parts: control unit and datapath. The control unit is

responsible for handling requests and responses, as well as orchestrating com-

putation in the datapath by generating various control signals. The datapath

performs computation on the input data to generate the output, and also gener-

ates various signals for the control unit to make decisions.

The control unit is usually composed of one or more Finite State Machines

(FSMs). Figure 4.8 shows an example FSM from the control unit of an acceler-

ator. In state S1, the accelerator reads a piece of input data. Then, depending

on the value, the FSM transitions to either state S2 or S3 to perform computa-

tion. When computation is done, the FSM transitions to state S4 to generate an

output, then transitions back to S1 to process the next input. The computation

112

initial state

S1

S2 S3

S4

Figure 4.8: Example Finite State Machine in control unit.

in state S2 and S3 can take different number of cycles (for example, 50 and 100

respectively). This is the major source of execution time variation.

A job usually uses multiple inputs. For example, an image consists of mul-

tiple macroblocks. If we know the decisions made by the control FSMs when

processing each input, and the processing time of each computation state, we

can predict execution time, and consequently the best DVFS level to run the job

at.

4.3.2 Features from Hardware Accelerators

In this section, we describe the features we use to represent the decisions of the

control unit. Here a feature refers to a measurable property that can be extracted

during accelerator execution. We also show how these features and the control

decisions they represent correlate with execution time.

We observe that control unit decisions are embedded in the state transitions

of the control unit FSM. For example, in Figure 4.8, a state transition from S1 to

S2 means the control unit decides to perform some computation associated with

113

state S2. If we count the number of state transitions from S1 to S2, we can know

the number of times computation associated with S2 has taken place. Thus, we

use state transition count (STC) as a type of feature in our prediction model.

However, knowing state transition counts is not enough. We also need to

know how each state transition impacts execution time of the accelerator. This

can be divided into two cases: If the latency of a computation state is fixed,

we can use statistical regression to figure out how much time the computation

takes given enough training data. If the latency is variable depending on in-

put, statistical regression can only estimate the average latency, which is not

enough to make good predictions. We observe that in this case, there is usually

a counter to keep track of whether the computation is finished. For example,

when the computation starts, the control unit sets the counter to the latency of

the computation. In each cycle the counter is decremented until it reaches zero,

signaling the end of computation. The range of the counter correlates with the

computation’s impact on execution time. In a decrementing counter, range can

be obtained from the counter’s initial value. In an incrementing counter, range

can be obtained from the counter’s final value before a reset. Thus, we use sev-

eral counter-related features: 1) initialization count (IC), which is the number of

times each counter is initialized. 2) average initial value (AIV), which is the av-

erage value a counter is initialized to. 3) average pre-reset value (APV), which is

the average of a counter’s final value before a reset. The last two features cap-

ture the range of each counter. Table 4.1 summarizes the features we use in our

prediction model.

114

Table 4.1: Summary of features in prediction model.

Feature Source Granularity

STC FSM Each source-destination states pair

IC Counter Each counter

AIV Counter Each counter

APV Counter Each counter

4.3.3 Identifying and Obtaining Features

Manually annotating and modifying FSMs and counters in hardware accelera-

tor designs would be too tedious and not feasible for large designs. Moreover,

many accelerators are third-party IPs and system designers are not familiar with

their internals. Thus, we propose an automated approach to identify and extract

such features in hardware accelerators based on a static analysis of RTL code of

accelerators.

The first step of the analysis is to identify FSMs and counters in the RTL, as

these are the sources of features. To achieve this, a behavioral RTL of hardware

accelerators is first transformed to a structural RTL using a synthesis tool. We

use Yosys [112], which is an open-source synthesis suite. After that, we use

an algorithm to find FSMs in the design based on techniques from a previous

study [99] on extracting FSMs from a gate-level netlist. The algorithm works by

analyzing the RTL and look for specific structures related to FSMs. Similar to

identifying FSMs, counters are also identified by RTL analysis.

The next step is to instrument the accelerator so that it records feature val-

ues during its operation, as illustrated in the offline stage of Figure 4.6. This is

115

done through RTL analysis and instrumentation. For state transition counts, we

extract each FSM’s transition table and compute the criteria for each state tran-

sition to take place. For each source-destination pair, we instrument the RTL to

generate a signal whenever the transition criteria is met, and record the number

of times the signal is asserted using a register. With this, we can simply read out

the register’s value to get a state transition count. Similarly, for initialization

counts, we compute the criteria for the counter to be initialized and instrument

the RTL to generate a signal when the criteria is met. To keep track of an av-

erage initial value and an average pre-reset value, we use registers which are

controlled by the initialization criteria. Note that we do not actually have to

calculate the average, it is sufficient to record the sum of these values and the

prediction model will take care of scaling the values to obtain average. All these

steps are done automatically without manual effort using our RTL analysis and

instrumentation framework implemented inside the Yosys open-source Verilog

analysis and synthesis suite.

After instrumenting the accelerator, we run RTL simulations with a training

set of job input data to obtain the feature values as well as execution time for

each job.

4.3.4 Prediction Model

After obtaining the features and execution time for each job, we develop a model

that takes feature values and maps them to execution time. The model is then

trained using the feature values and execution time data from training runs. We

have the following requirements for our prediction model: (1) Accurate pre-

116

diction. (2) Low overhead in terms of time, area, and energy. A simple model

which uses a small number of features is preferred. (3) Conservative prediction,

which means when there is a trade-off to be made between a deadline miss and

less energy savings, the model should avoid deadline miss even though it may

use more energy.

With these requirements in mind, we use a linear model to map feature val-

ues to execution time. Linear models are very simple to evaluate at runtime by

calculating the dot product of feature values and model coefficients, which is

just a series of multiply accumulate operations. The linear model can be written

as

ȳ = xβ

where ȳ is the predicted execution time, x is a vector of feature values, and

β is a vector of model coefficients. Table 4.2 summarizes the variables in our

prediction model.

To train a linear model, the most common way is to use a least squared error

as a metric. That is, we try to minimize the following term

minimize
β

‖Xβ− y‖2

However, this commonly used approach has major drawbacks in the context of

DVFS control: first, it uses all feature values to calculate the target function, de-

spite the fact that only a few features are often sufficient to predict the execution

time. Second, this approach tries to minimize both positive and negative errors.

However, in the context of DVFS, it is more important to minimize negative

errors to reduce deadline misses.

To address the first issue, we use Lasso [107] to minimize the number of

117

Table 4.2: Variables in prediction model.

Variable Type Description

ȳ Scalar Predicted execution time

x Vector Feature values

β Vector Model coefficients

y Vector Profiled execution times

X Matrix Profiled feature values

Xβ− y Vector Prediction errors

α Scalar Under-predict penalty weight

γ Scalar Number of terms penalty weight

‖ · ‖ Scalar L2-norm (Euclidean distance)

‖ · ‖1 Scalar L1-norm (sum of absolute values)

non-zero coefficients in our model by adding a penalty term to our model:

minimize
β

‖Xβ− y‖2 + γ‖β‖1

where γ is parameter empirically determined to reduce the number of non-zero

coefficients without impacting modeling accuracy too much. To address the

second issue, we separate positive and negative errors:

minimize
β

‖pos(Xβ− y)‖2 + α‖neg(Xβ− y)‖2 + γ‖β‖1

where pos(x) = max(x, 0) and neg(x) = max(−x, 0). We set α > 1 to place

more weight on negative errors.

It can be shown that the objective function we try to minimize above is con-

vex. Thus, we can use a convex optimization solver to fit the model.

118

4.3.5 Hardware Slicing

Now we have a model to predict execution time from features. However, to ob-

tain feature values for a job at run-time, we need to run the hardware accelerator

with the job’s input. This is not feasible since our goal is to predict execution

time before running the hardware accelerator. To address this issue, we pro-

pose to generate a minimal version of the hardware accelerator, which we call a

hardware slice. During runtime, the slice can be executed with the job’s input to

quickly calculate the feature values.

To generate such a slice, we use program slicing techniques on hardware

description languages [34] to only keep the part of the original accelerator that

computes the features of interest, while removing other parts of the hardware.

This allows us to obtain a slice that is much smaller than the original hardware

accelerator in terms of area.

However, executing such a slice would take the same number of cycles as

the original hardware accelerator. This is not fast enough since we need to make

predictions before running the hardware accelerator. The reason why a slice can

not run faster is that the control unit is not aware that some parts of the hard-

ware were removed, and still waits in certain states as if the original computa-

tion is still taking place. For example, in Figure 4.8, the FSM still transitions to

S2, waits for a number of cycles, and then transitions to S4. This inefficiency can

be removed by modifying the FSM transition table to remove the waiting be-

havior. This optimization does not affect the accuracy of the prediction because

we still have the information about how long the FSM would stay in waiting

states from counter initial values and pre-reset values. The resulting hardware

slice efficiently calculates the control flow features of the original hardware ac-

119

celerator.

4.3.6 DVFS Model

After obtaining an execution time prediction for a job under the nominal fre-

quency, a DVFS model is used to predict what the execution time would be

under different frequencies. We use a common model in literature [70] that de-

composes execution time into memory time and compute time:

T = Tmemory + C/ f

where T is execution time, Tmemory is the part of execution time when the ac-

celerator is stalled waiting for memory, which does not scale with accelerator

frequency. C is the number of cycles when the accelerator is not stalled, and f is

the frequency of the accelerator. From the execution time prediction, we know

T0 = Tmemory + C/ f0

where T0 is the predicted execution time, and f0 is the nominal frequency. To

predict the execution time under a different frequency, we need to know Tmemory

and C. We found that for the many accelerators, Tmemory is negligible, because

most accelerators preload data from memory ahead of time in parallel to the

computation. This can be either done using DMA or using the data supply

framework described in Chapter 2. Thus, the equation above can be simplified

as

T0 = C/ f0

Assuming Tbudget is the time budget for the job, we can run the accelerator at

f = C/Tbudget = f0T0/Tbudget

120

to minimize energy while meeting deadline.

In real hardware, however, there are only a few discrete frequencies the ac-

celerator can run at. As a result, we need to round up f to the nearest frequency

level. Also, executing the hardware slice and switching voltage/frequency takes

some time, which needs to be deducted from Tbudget. We can also add a margin

to the predicted execution time to be conservative. After taking all these into

account, we set the final frequency level to be

f = d f0(T0 + Tmargin)/(Tbudget − Tslice − TDVFS)e

and execute the accelerator, where d·e represents rounding to the nearest fre-

quency level above.

4.3.7 Predictor Operation Modes

There are a few options regarding how to run the predictor and main computa-

tion job. In Figure 4.4, we have shown a simple sequential mode that runs the

predictor first, sets a DVFS level, and then runs the accelerator. Figure 4.9 shows

two alternative modes. In pipelined mode, prediction for job i + 1 runs while job

i is running. This ensures the DVFS decision is ready at the start of a job with-

out incurring time overheads from predictor execution. However, this requires

that the prediction for job i + 1 does not use the output of job i. In parallel mode,

the main jobs start running at a conservative DVFS level with predictor for that

job running alongside. After predictor finishes execution, the DVFS level is set

according to the prediction, and the main job continues to execute at the pre-

dicted DVFS level. Parallel mode does not require independent jobs, while still

removing most of the time overheads of prediction execution.

121

Sequential

Pipelined

Parallel

1 1 22

1 2

1 2

1 2

1 2

Prediction Main Job

33

3

3

3

timedeadline deadline deadline

Figure 4.9: Predictor operation modes.

BitStream
parser

Residue
decoding

Intra prediction
mode decoder

Boundary strength decoding

Intra
Prediction

Inter
Prediction

Inter motion
vector decoder

su
m

Deblocking
filter

Bitstream
memory

Decoded
frames

Figure 4.10: Architecture of H.264 decoder.

4.3.8 Case Study

In this section, we present a case study on execution time prediction using the

H.264 decoder as an example. We discuss the features chosen by the framework

and why these features can be used to predict execution time. We also discuss

the details of the hardware slice, and show which parts of the original accelera-

tor were kept and which parts were sliced out.

122

Figure 4.10 shows the high-level architecture of the H.264 decoder [117].

During decoding, the bitstream parser reads an H.264 bitstream from memory,

and performs parsing and entropy decoding. Then, according to the prediction

type, each macroblock is either sent to the intra prediction or inter prediction

pipeline. The prediction output is then combined with the output of residue

decoding. The result is then processed by the deblocking filter to generate the

final picture. Each block in Figure 4.10 has its control unit and datapath.

In feature detection step, our framework detected 257 features related to

FSMs and counters. Using Lasso, the number of features is reduced to only 7

while still maintaining good prediction accuracy with a worst-case error around

3%. Among these features, two of them are FSM transitions related to the num-

ber of transform coefficients in the residue decoding of a macroblock. The other

5 features come from the inter prediction (motion compensation) pipeline. They

are counters that control the preloading of data used by inter prediction, as well

as counters that control the computation of macroblocks. All these features are

in the control unit of the corresponding blocks of the H.264 decoder, and thus

do not involve the main computation datapath.

Since the most computation-intensive parts of the decoder are not involved

in generating the features, the hardware slicing step of the framework was able

to remove them, such as the datapath of intra and inter prediction, deblocking

filter, etc. The slice only contains the bitstream parser and the control units of

intra and inter prediction pipeline. As a result, the hardware slice was very

small and energy-efficient compared to the full decoder. The area of the slice

is 37,713µm2, which is only 5.7% of the full decoder. In addition, the execution

time optimization step of our framework was able to remove empty waiting

123

states in the hardware slice, thus the slice only takes 5%-15% percent of the full

decoder’s execution time to generate features. As a result, the hardware slice

only consumes 2.8% of the energy compared to the full decoder. Furthermore,

predicting the execution time from features is very fast since the model is linear

with only 7 coefficients.

For comparison, we also built a predictor based on application-specific fea-

tures that we manually identified for H.264 using an approach proposed in a

previous study [95]. These features were obtained using an H.264 bitstream

analysis software. Surprisingly, the predictor using manually identified fea-

tures had a worst-case prediction error around 10%, compared to 3% for our

automatically generated predictor. Further inspection revealed that a subtle ef-

fect (long latency for blocks with quarter-pixel motion vectors) was not captured

by the manually identified features. While carefully chosen application-specific

features may improve prediction accuracy, obtaining them requires a deep un-

derstanding of the algorithm, which often can only be done by domain experts.

4.4 Evaluation

In this section, we present the evaluation results for the proposed DVFS frame-

work. We first discuss our evaluation methodology and experimental setup.

Then, we show evaluation results for ASIC and FPGA-based accelerators, and

discuss some extensions.

124

4.4.1 Methodology

We use an integrated evaluation methodology that uses a combination of circuit-

level, gate-level and register-transfer-level modeling. Circuit-level modeling is

used to characterize the voltage-frequency relationship. Gate-level modeling

is used to build accurate area and energy models. And register-transfer-level

modeling is used to accurately model the performance of hardware accelerators.

Circuit-level modeling: For ASIC accelerators, we characterize the relation-

ship between voltage and frequency for our accelerators using SPICE simula-

tions based on a method reported in literature [41]. For each accelerator, we

used a chain of FO4 loaded inverters such that the total delay of the chain

matches the cycle time of the accelerator at nominal voltage. Then we change

the supply voltage and measure the voltage-delay curve and use that to model

the accelerator’s frequency under different voltage levels. For FPGA accelera-

tors, the voltage-frequency relationship is obtained from published characteri-

zations [14].

Gate-level modeling: For ASIC accelerators, we implemented each hard-

ware accelerator using Synopsys Design Compiler, IC Compiler, PrimeTime PX

with the TSMC 65nm standard-cell library characterized at 1 V. Detailed post-

place-and-route gate-level simulations were used to obtain the power and en-

ergy of the accelerator’s execution for a subset of the jobs at 1 V. Then we apply

the voltage-frequency model and the frequency-execution time model to esti-

mate the power and the energy consumption under different DVFS levels. For

FPGA accelerators, the synthesis and place-and-route flow is based on Vivado.

Post-place-and-route simulations are used to obtain power and energy estima-

tions, which are then scaled to different DVFS levels.

125

Register-transfer-level modeling: We use RTL simulations to determine the

execution time of each job for our accelerators. We assume the accelerators

are not bandwidth-limited and a DMA controller transfers data from the main

memory to the accelerator’s scratchpad before executing each job.

4.4.2 Experimental Setup

We use a set of seven benchmark accelerators in our evaluation, including an

H.264 video decoder [117], a JPEG encoder [81], a JPEG decoder [79], a molec-

ular dynamics accelerator [92], a stencil filtering accelerator used in image pro-

cessing [92], an Advanced Encryption Standard (AES) accelerator [78], and a

Secure Hash Algorithm (SHA) accelerator [80]. Note that even though some

hardware accelerators are traditionally throughput-oriented, they can have re-

sponse time requirements when used as a part of a frame-based or interactive

application. For example, when a user is playing a DRM-protected video, a

crypto accelerator has to decrypt the data for each frame before a certain dead-

line. As another example, when a smartphone camera shoots in a burst mode,

the JPEG engine has to encode each picture before a certain deadline. Table 4.3

lists the accelerators and describes what a task is in each accelerator. Table 4.4

describes the workloads we use to train and test the DVFS controller.

For ASIC accelerators, we use six equally-spaced voltage levels that span

from the nominal voltage at 1 V (high performance/energy point) to 0.625 V

(low performance/energy point). The frequency corresponding to a voltage is

determined using the voltage-frequency relationship obtained from circuit-level

modeling. For FPGA accelerators, we use seven equally-spaced voltage levels

126

Benchmark Description Task

h264 H.264 video decoder Decode one frame
cjpeg JPEG encoder Encode one image
djpeg JPEG decoder Decode one image
md Molecules/physics simulation Simulate one timestep

stencil Image filtering Filter one image
aes Advanced Encryption Standard Encrypt a piece of data
sha Secure Hash Function Hash a piece of data

Table 4.3: Summary of benchmarks.

Benchmark Workload (Train) Workload (Test)

h264 2 videos (600 frames, same size) 5 videos (1500 frames, same size)
cjpeg 100 images (various sizes) 100 images (various sizes)
djpeg 100 images (various sizes) 100 images (various sizes)
md 200 steps (particle pos. changes) 200 steps (particle pos. changes)

stencil 100 images (various sizes) 100 images (various sizes)
aes 100 pieces of data (various sizes) 100 pieces of data (various sizes)
sha 100 pieces of data (various sizes) 100 pieces of data (various sizes)

Table 4.4: Summary of workloads.

from 1 V to 0.7 V. We assume voltage regulators are off-chip. Switching time

for off-chip voltage regulators are typically in the range of 10µs [57]. In our

evaluation, switching time is conservatively set to 100µs to account for potential

overheads in case changing DVFS levels involves device drivers. However, we

do note that there are faster DVFS switching techniques in literature [41, 57],

which could further reduce DVFS switching overhead to the range of tens of

nanoseconds.

We set the deadline for each job at 16.7ms, which corresponds to the 60fps

screen refresh rate in most of today’s devices. We compare our prediction-based

DVFS controller with the following schemes:

127

Bench- Area Frequency Execution Time (ms)
mark (µm2) (MHz) Max Avg. Min

h264 659,506 250 11.46 7.56 6.50
cjpeg 175,225 250 13.90 5.22 0.88
djpeg 394,635 250 14.79 3.78 1.82
md 31,791 455 15.52 7.11 0.80

stencil 10,140 602 15.97 5.92 1.41
aes 56,121 500 16.19 4.62 1.94
sha 19,740 500 12.94 4.11 1.11

Table 4.5: Summary of ASIC implementation results.

1. baseline: The baseline runs at constant voltage and frequency. Each accel-

erator runs at 1 V and the frequency it is synthesized at.

2. pid: The PID-based controller uses prediction errors from previous jobs

together with a control-theory based algorithm to determine the execution

time of the next job. For each accelerator, we tuned the PID controller’s

parameters to achieve the best prediction accuracy. A margin is added to

PID controller’s output to reduce the number of deadline misses. We tried

different margins and chose 10% as the amount that balances deadline

miss rate and energy savings.

3. prediction: This is our prediction-based DVFS controller. A 5% margin is

added to its prediction. Its predictions are usually fairly accurate so only

a small margin is needed.

4.4.3 Results for ASIC Accelerators

Implementation Results Table 4.5 shows the area, frequency, and execution

time statistics for the benchmark accelerators. The area numbers are from place-

128

and-route results. The frequency numbers are shown for nominal voltage at 1

V. The execution time statistics are obtained at nominal voltage and frequency.

Large execution time variations are observed.

Execution Time Prediction Accuracy Figure 4.11 shows box-and-whisker

plots of prediction error of our scheme for each benchmark. The box extends

from the 25% to 75%, with a line at the median. The whiskers extend from

the box to show the range of the data. Positive numbers correspond to over-

prediction and negative numbers correspond to under-prediction. For most

benchmarks, the prediction error is negligible, indicating the effectiveness of

our approach. The JPEG decoder showed higher prediction error. This is be-

cause some of its execution time variations cannot be accurately modeled using

the extracted features. Specifically, some of the FSMs in the decoder stay in a

state for a variable number of cycles which cannot be obtained using a corre-

sponding counter. However, our slice-based predictor still captured the major-

ity of its execution time variations. In addition, the convex optimization-based

prediction framework is conservative and leads to very few under-predictions.

Energy Savings and Deadline Misses Figure 4.12 shows the comparison of

normalized energy and deadline misses between different DVFS schemes. The

energy numbers are normalized to the baseline. The baseline always runs at

constant frequency and thus has the highest energy but no deadline misses.

On average, our schemes achieved 36.7% energy savings across all bench-

marks. PID-based DVFS controller has 4.3% higher energy consumption than

our scheme. In addition, the PID controller often chooses lower DVFS levels

than needed which leads to many deadline misses. On average, the PID-based

129

h264 cjpeg djpeg md stencil aes sha
10

5

0

5

10

15

20

P
re

di
ct

io
n

E
rr

or
 (%

)

Figure 4.11: Errors of slice-based execution time prediction. The box ex-
tends from the 25% to 75%, with a line at the median. The
whiskers show the range of the data. Outliers are shown as
individual points.

controller misses 10.5% of the deadlines while our prediction-based controller

misses only 0.4% of the deadlines.

h2
64
cjp

eg
djp

eg md
ste

nc
il

ae
s

sh
a

av
era

ge
0

20

40

60

80

100

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

baseline pid prediction

h2
64
cjp

eg
djp

eg md
ste

nc
il

ae
s

sh
a

av
era

ge
0
2
4
6
8

10
12
14
16
18

D
ea

dl
in

e
M

is
se

s
(%

)

Figure 4.12: Normalized energy and deadline misses of different DVFS
schemes.

130

h2
64

cjp
eg

dj
pe

g
m

d
st

en
cilae
s

sh
a

av
er

ag
e

0
5

10
15
20
25

S
lic

e
A

re
a

(%
)

h2
64

cjp
eg

dj
pe

g
m

d
st

en
cilae
s

sh
a

av
er

ag
e

0
1
2
3
4
5
6

S
lic

e
E

ne
rg

y
(%

)

h2
64

cjp
eg

dj
pe

g
m

d
st

en
cilae
s

sh
a

av
er

ag
e

0
1
2
3
4
5
6
7
8
9

S
lic

e
Ti

m
e

(%
)

Figure 4.13: Area, energy and execution time overhead of prediction slice.

Overheads of Execution Time Prediction The hardware slice for our

prediction-based DVFS has overheads in terms of area, energy, and time. The

prediction slice takes up extra die area, and consumes energy during execution.

Also, since the prediction slice is run before the actual job, the time needed to

run the slice reduces the amount of time left to run the job, which in turn re-

duces the opportunity to run the job at a lower frequency. Figure 4.13 shows

the overheads of the slice. Slice energy is normalized to the actual job’s energy.

Slice area is normalized to the accelerator’s area. Slice time is normalized to the

job’s deadline. On average, the prediction slice adds 5.1% area overhead to the

baseline accelerator. Running the prediction slice takes about 3.5% of the time

budget, while adding 1.5% energy overhead to the job on average. The energy

overhead is low because the slice is small compared to the full accelerator, and

only runs for a short period. Besides the overheads introduced by the hard-

ware slice, DVFS switching also has overheads since the voltage and frequency

takes time to stabilize. Note that the results shown in Figure 4.12 includes these

overheads.

131

h2
64
cjp

eg
djp

eg md
ste

nc
il

ae
s

sh
a

av
era

ge
0

10
20
30
40
50
60
70
80

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

prediction prediction w/o overhead oracle

h2
64
cjp

eg
djp

eg md
ste

nc
il

ae
s

sh
a

av
era

ge
0.0

0.5

1.0

1.5

2.0

D
ea

dl
in

e
M

is
se

s
(%

)

Figure 4.14: Normalized energy and deadline when overhead is removed.

To better understand how these overheads impact energy savings and dead-

line misses, we show the results for the prediction scheme when the overheads

of hardware slice and DVFS switching are removed. In addition, we also show

the results for an oracle scheme that always sets a best DVFS level for each job,

and without DVFS switching overhead. Figure 4.14 shows that by removing

these overheads, energy savings are improved by 3.1%, from 36.7% to 39.8%.

Deadline misses are reduced from 0.4% to 0%. The oracle scheme has 40.5%

energy savings, which is 0.7% higher than the prediction scheme without over-

heads. Both the oracle scheme and the prediction scheme without overhead

have zero deadline misses. This shows that the prediction scheme with over-

head removed is very close to optimal. It also indicates that the deadline misses

we see in the prediction scheme without overhead is not due to misprediction.

Instead, it is because insufficient time budget is left after the slice finishes exe-

cution, so that even running at highest frequency will miss the deadline. This

only happens to jobs whose execution time is very close to, or even longer than

132

the length of the deadline, which are usually rare.

h2
64
cjp

eg
djp

eg md
ste

nc
il
ae

s
sh

a

av
era

ge
0

10
20
30
40
50
60
70
80

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

prediction prediction w/ boost

h2
64
cjp

eg
djp

eg md
ste

nc
il
ae

s
sh

a

av
era

ge
0.0

0.5

1.0

1.5

2.0

D
ea

dl
in

e
M

is
se

s
(%

)
Figure 4.15: Normalized energy and deadline misses with voltage boost-

ing.

These rare misses can be eliminated by boosting voltage temporarily for

these jobs. With execution time prediction, the DVFS controller knows when

the time budget left is not enough, and can boost DVFS level accordingly. Fig-

ure 4.15 shows normalized energy and deadline misses when we introduce a

boost level at 1.08 V. With voltage boosting, deadline misses are eliminated

while only increasing normalized energy by 0.24%.

Sensitivity Study on Varying Deadlines Figure 4.16 shows the normalized

energy and deadline misses when we vary the job deadline from 0.6x to 1.6x

of the deadline used before. For conciseness, we only show results averaged

across all benchmarks. Since our DVFS model is aware of the deadline, it will

use lower DVFS levels to save energy when deadlines are longer, and use higher

DVFS levels trying to meet response time requirements when deadlines are

133

0.6 0.8 1.0 1.2 1.4 1.6
Normalized Deadline

0

20

40

60

80

100

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

baseline pid prediction

0.6 0.8 1.0 1.2 1.4 1.6
Normalized Deadline

0

5

10

15

20

25

D
ea

dl
in

e
M

is
se

s
(%

)

Figure 4.16: Normalized energy and deadline misses when varying dead-
lines (averaged across all benchmarks).

shorter. When the deadline is shorter than 1.0x, the prediction-based DVFS con-

troller starts showing misses. This is mostly due to the deadlines being too

short to meet for some jobs even when running at highest frequency, which is

why the baseline policy also shows misses. When the deadline is increased,

the prediction-based DVFS controller achieves more energy savings while still

meeting all deadlines. Note that the execution time predictor does not need to

be retrained when the deadline changes. Only a new deadline needs to be set

in the DVFS model. The PID-based controller, on the other hand, still shows

misses even with longer deadlines because it often uses the wrong DVFS level

due to low prediction accuracy.

134

4.4.4 Results for FPGA-based Accelerators

In this section, we show results for FPGA-based accelerators. The target FPGA

device we use is Xilinx Kintex-7. The execution time prediction accuracy for

FPGA accelerators is similar to the accuracy for ASIC accelerators because the

features used for prediction are from RTL level, and the prediction model is able

to adapt to differences in operation frequency.

Figure 4.17 shows normalized energy and deadline misses of different

DVFS schemes for FPGA-based accelerators. Overall, FPGA-based accelera-

tors achieved 35.9% energy savings with the predictive DVFS framework, while

missing 0.4% of the deadlines. The numbers are comparable to ASIC results.

h2
64
cjp

eg
djp

eg md
ste

nc
il

ae
s

sh
a

av
era

ge
0

20

40

60

80

100

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

baseline pid prediction

h2
64
cjp

eg
djp

eg md
ste

nc
il

ae
s

sh
a

av
era

ge
0
2
4
6
8

10
12
14
16

D
ea

dl
in

e
M

is
se

s
(%

)

Figure 4.17: Normalized energy and deadline misses for FPGA-based ac-
celerators.

Figure 4.18 shows the overheads of the slice for FPGA-based acceler-

ators. On average, the prediction slice use 9.4% resources (average of

LUT/DSP/BRAM) of the baseline accelerator. Running the prediction slice con-

135

sumes 2% of the energy of the job on average, while using about 3.5% of the time

budget. The resource overhead for stencil appears large because the acceler-

ator only uses a small number of LUTs for control logic while using DSP blocks

for main computations. As a result, the relative overhead is shown to be high

even though the absolute resource usage of the prediction slice is quite low.
h2

64
cjp

eg
dj

pe
g

m
d

st
en

cilae
s

sh
a

av
er

ag
e

0
5

10
15
20
25
30
35
40
45

S
lic

e
R

es
ou

rc
es

 (%
)

h2
64

cjp
eg

dj
pe

g
m

d
st

en
cilae
s

sh
a

av
er

ag
e

0
1
2
3
4
5
6
7

S
lic

e
E

ne
rg

y
(%

)

h2
64

cjp
eg

dj
pe

g
m

d
st

en
cilae
s

sh
a

av
er

ag
e

0
1
2
3
4
5
6
7
8
9

S
lic

e
Ti

m
e

(%
)

Figure 4.18: Area, energy and execution time overhead of prediction slice
for FPGA accelerators.

4.4.5 Extensions

Accelerators Generated using High-Level Synthesis High-Level Synthesis

(HLS) allows designers to write accelerators in a high-level programming lan-

guage such as C, and synthesizes them into RTL descriptions. To use our frame-

work with HLS-generated accelerators, one way is to analyze the RTL generated

by HLS, extract features, and build a predictor by slicing the RTL. However, if

analysis can be done during the HLS process, it can potentially enable opti-

mizations that can not be easily performed at RTL level. For example, instead

of slicing the RTL to obtain a hardware slice, we can use program slicing [110]

136

on the C code to obtain a software slice that calculates the control flow features,

and then synthesize the sliced C code into hardware. The HLS tool can perform

optimizations during the synthesis, resulting in a slice that calculates feature

values faster. This leaves more time budget to run the accelerator itself, reduc-

ing the possibility of deadline misses due to insufficient time budget after slice

execution.

md-rtl
md-hls

stencil-rt
l

stencil-h
ls

4
2
0
2
4

P
re

di
ct

io
n

E
rr

or
 (%

)

md-rtl
md-hls

stencil-rt
l

stencil-h
ls

0
2
4
6
8

10

D
ea

dl
in

e
M

is
se

s
(%

)

Figure 4.19: Comparison of prediction errors and deadline misses between
slicing at RTL and HLS level.

We compared these two approaches using the md and stencil accelera-

tors [92], which have C versions available. Figure 4.19 shows that the prediction

accuracy of both approaches are very high, but when the hardware slice is gen-

erated using HLS from sliced C code, the deadline misses are gone. This implies

the slice generated using HLS runs faster because we know from Section 4.4.3

that the deadline misses in md and stencil are caused by insufficient time

budget left after the slice finishes execution rather than mispredictions. This

can be verified by looking at Figure 4.20, which shows the slice execution time

for the HLS approach is much shorter.

137

md-rtl
md-hls

stencil-rt
l

stencil-h
ls

0
5

10
15
20
25
30
35
40

S
lic

e
A

re
a

(%
)

md-rtl
md-hls

stencil-rt
l

stencil-h
ls

0
1
2
3
4
5
6

S
lic

e
E

ne
rg

y
(%

)

md-rtl
md-hls

stencil-rt
l

stencil-h
ls

0
1
2
3
4
5
6
7
8
9

S
lic

e
Ti

m
e

(%
)

Figure 4.20: Comparison of area, energy and execution time overhead be-
tween slicing at RTL and HLS level.

Software-based Predictors Some accelerators have a software version with

the same function, either because they are generated using HLS, or because they

have a software implementation (e.g. ffmpeg for H.264). In these cases, instead

of building hardware predictor, we can run a software predictor on the CPU to

predict the execution time of the accelerator. We experimented with this idea on

the H.264 decoder, and achieved good prediction accuracy.

138

CHAPTER 5

RELATED WORK

This chapter describes the existing work related to this thesis. Section 5.1 dis-

cusses high-level design methodologies for accelerators. Section 5.2 discusses

previous work on data supply for accelerators. Section 5.3 discusses related

work on parallel programming and design methodologies for parallel acceler-

ators. Section 5.4 discusses related work on dynamic voltage and frequency

scaling and execution time prediction.

5.1 High-Level Design Methodologies for Accelerators

Traditionally, accelerators are designed using a hardware-oriented flow that in-

volves writing low-level register transfer level (RTL) code using hardware de-

scription languages such as Verilog and VHDL. The high complexity and poor

productivity of this flow have lead researchers to look into design methodolo-

gies that provide a higher level of abstraction.

5.1.1 High-Level Synthesis

High-Level Synthesis (HLS) compiles high-level languages such as C/C++ [20,

114] into RTL descriptions. A major reason that HLS improves productivity is

that it decouples the functional specification from the timing specification of hard-

ware design. Most high-level languages are untimed, meaning that program-

mers only need to describe the functional behavior of an algorithm or applica-

tion. In contrast, RTL design is timed, meaning that the designer needs to specify

139

both the functionality and exact time each operation takes place, which is te-

dious to perform manually. HLS tools allow programmers to focus on the func-

tional specification, and uses sophisticated algorithms to automatically generate

the timing schedule. Many HLS tools allow programmers to issue high-level di-

rectives to guide the scheduling process, which enables generating multiple de-

signs with different performance, power, and area profiles from the same func-

tional description. This ability to quickly explore the design space is another

reason why HLS achieves higher productivity compared to RTL design. Many

high-level synthesis frameworks have been proposed, with support for various

input languages. Here we describe a number of widely used frameworks.

Bluespec Bluespec is a framework which includes a language and a set of tools

for hardware design. The language, Bluespec SystemVerilog (BSV), extends Sys-

temVerilog to support describing hardware as a set of Guarded Atomic Actions,

which specifies the operations and the rules under which they should fire. The

Bluespec compiler then synthesizes BSV into RTL (Verilog) by finding a sched-

ule for the operations that satisfies the rules. The BSV language also supports

many advanced features of modern programming languages, such as object-

oriented interfaces, polymorphic types, static type checking, and first class pa-

rameterization [76].

HLS from C Family Languages C family languages such as C/C++, SystemC,

and OpenCL are among the most widely supported languages for HLS, with

various tools developed by commercial companies [54, 114] and academic in-

stitutions [20]. HLS compilers for these languages perform a series of steps

including code transformation, resource allocation, operation scheduling, and

140

resource binding to generate RTL. Due to the procedural nature of these lan-

guages, directly mapping the statements in a program to hardware would often

be overly serialized and inefficient. Thus, HLS tools often use compiler analy-

sis as well as additional user-provided directives to control how the procedural

constructs such as loops are mapped to efficient hardware pipelines.

HLS from Domain Specific Languages Domain-specific languages (DSLs)

trade off generality for efficiency. DSLs often provide a higher level of abstrac-

tion than general-purpose languages, and potentially enable programmers to

more productively express certain domain-specific algorithms and allow HLS

tools to generate more efficient hardware. Delite Hardware Definition Lan-

guage (DHDL) [58] is a DSL for generating accelerators based on a collection

of parallel patterns inspired by functional programming languages. Halide [90]

is a DSL for generating efficient image processing pipelines, and can be synthe-

sized into hardware [84].

The architectural frameworks proposed in this thesis research leverage HLS,

but in addition address some challenges faced by existing HLS frameworks,

such as not able to tolerate variable memory latency, and insufficient support

for dynamic parallelism. Furthermore, the design methodology proposed in

this thesis combines the benefits of both HLS and RTL designs, while avoiding

their shortcomings. HLS is used to allow accelerator designers to productively

describe application logic, and the frameworks use RTL to implement highly

optimized and configurable accelerator architectures that are challenging to im-

plement in existing HLS tools. The reusable architecture templates allow de-

signers to use the accelerator architectures without needing to manually write

any RTL.

141

5.1.2 Hardware Generation Languages

Hardware Generating Languages (HGLs) aim to enable rapid design spacing

exploration for hardware designs. In contrast to HLS, HGLs are typically used

with RTL designs. Genesis2 [97] combines SystemVerilog with Perl scripts to

enable creating highly parameterizable hardware designs (“chip generators”),

which are templated designs that encapsulate designer knowledge and design

trade-offs. Chisel [12] is a hardware construction language embedded in Scala

that enables rapid hardware generation using highly parameterized generators

and layered domain-specific hardware languages.

The architectural frameworks proposed in this thesis leverage HGLs for im-

plementing the parameterizable architecture templates. We use PyMTL [69],

which is a hardware generation language embedded in Python. Our frame-

works extend the HGL approach by allowing designers to use HLS to synthe-

size application logic from high-level languages, which is more productive than

writing hardware generation languages.

5.2 Data Supply for Accelerators

Efficient data supply is a fundamental requirement for accelerators to achieve

good performance. Depending on how tightly the accelerators are integrated

with general-purpose processor cores, and the way the accelerators are de-

signed, researchers have proposed different approaches to address the data sup-

ply problem.

142

5.2.1 Data Supply for In-Core Accelerators

Accelerators that are tightly integrated into a processor core often rely on the

processor pipeline to perform memory accesses. A number of proposals per-

form memory accesses in a decoupled fashion, following the Decoupled Ac-

cess/Execute (DAE) paradigm. DAE [101] was originally proposed for in-order

processors as a complexity-effective mechanism to address the memory latency

problem by dividing a program’s instructions into an access stream and an ex-

ecute stream that run in a decoupled fashion and communicate through archi-

tecturally visible queues. Later work extended DAE to out-of-order processors

and found that DAE can use two small instruction windows to achieve the ef-

fect of a single large instruction window, but with less complexity [55]. In recent

work, DeSC [49] explored DAE for heterogeneous architectures and proposed

to use an out-of-order processor core to supply data to a hardware accelerator.

MAD [51] proposed to use dataflow to build a specialized engine that executes

memory access phases efficiently, which can also be used to supply data to hard-

ware accelerators.

The data supply framework proposed in this thesis differs from previous

work as we target stand-alone accelerators that are not tightly integrated with

a processor core or dedicated memory access engine. We employ DAE as a

paradigm to design accelerators that effectively tolerate the memory latency and

thus remove the burden of hand-crafting dedicated memory management logic

from accelerator designers.

143

5.2.2 Memory Architecture for Standalone Accelerators

CoRAM [33] is a memory architecture for FPGA-based accelerators. In CoRAM,

designers write control threads in a C-like language that manages the commu-

nication between DRAM and on-chip scratchpad memories. The data supply

framework proposed in this thesis differs from CoRAM in that we provide

a framework to automatically transform accelerators into a decoupled archi-

tecture, instead of relying on the designer to write application-specific control

threads manually.

LEAP [8] is a compiler framework that transforms accelerators that use

arbitrary-size scratchpads to use small caches backed-up by a memory hierar-

chy. It was later extended to handle prefetching [118] but can only use address-

based stream localization since accelerators do not have a PC. The data supply

framework proposed in this thesis can improve LEAP by providing better la-

tency tolerance using access/execute decoupling, and enabling more effective

prefetching by tagging memory accesses.

CHIMPS [86, 88] is a memory architecture and compilation framework for

FPGA accelerators that use many small, distributed caches implemented using

block RAMs. The cache coherence issue is avoided by statically partitioning the

memory address space between caches. Our data supply framework can work

with this many-cache architecture by connecting each memory unit to a cache

and use the same address partitioning technique. This can potentially lead to

better performance utilizing higher memory bandwidth.

144

5.2.3 Memory Optimizations in High-Level Synthesis

Deep pipelining is an HLS technique that allocates extra pipeline stages for

memory operations in order to tolerate memory latency. However, in cache-

based accelerators, it may lower pipeline throughput as it always targets the

worst case even though most memory accesses are cache hits.

Tan et al. proposed to synthesize multithreaded pipelines with HLS to toler-

ate memory latency [106]. The approach mainly targets loop pipelining and al-

locates a thread for each iteration of a loop. Threads are switched out on a cache

miss and stored in a context buffer, and woken up to continue execution when

the memory response comes back. This approach achieves good speedup with

low resource overhead, but is only applicable to data-parallel kernels where

each loop iteration is independent. In contrast, our data supply framework is

applicable to more general programs.

Decoupled pipelining was first proposed as a technique to parallelize single-

threaded programs. DSWP [82] is a compiler framework that extracts coarse-

grained pipeline parallelism from single-thread code and executes using multi-

ple threads. The framework analyzes the program dependence graph and par-

titions the graph between threads. The threads communicate using message

passing. Later work [26] extended it to HLS where an accelerator is transformed

into multiple decoupled pipeline stages that communicate through FIFOs. As

a result, the impact of a variable-latency memory access can be limited to one

stage. Coarse-Grained Pipelined Accelerators (CGPA) [67] extends decoupled

pipelining by using multiple workers for pipeline stages that are parallelizable.

In comparison, our data supply framework uses DAE as the decoupling mech-

anism and combines hardware prefetching with decoupling to enable more ef-

145

ficient data supply for accelerators.

5.3 Parallel Accelerators

Both general-purpose processors and accelerators need to exploit parallelism

to achieve good performance. There is a rich history of research on parallel

programming, and a number of proposals on generating parallel accelerators.

5.3.1 Task-Based Parallel Programming

Task-based parallel programming was first proposed in [19], and recently

gained popularity as the technology matures and with the introduction of lan-

guages and frameworks such as Cilk [62] and Intel TBB [93]. Task-based pro-

gramming has been shown to allow programmers to think at a higher level

in addition to its performance benefits such as matching parallelism to avail-

able hardware resources and improved load balancing. Carbon [59] implements

hardware task queues in a processor that can be accessed using special instruc-

tions. The parallel accelerator framework proposed in this thesis is inspired by

task-based parallel programming, but leverages it for designing hardware ac-

celerators. The framework includes a hardware architecture that implements

a task-based parallel computation model, and a unified language that can be

mapped to both accelerators and parallel software.

Work stealing was developed along with task-based programming and has

been extensively studied [16,17,93]. It has been shown to have provable bounds

in terms of the space and time needed for a parallel execution compared to serial

146

execution [17], and also works well in practice. We implement work stealing in

hardware and show that it can efficiently distribute and balance load in parallel

accelerators.

5.3.2 Design Methodologies for Parallel Accelerators

Generating parallel accelerators from a high-level description was explored and

implemented in several languages and frameworks [11,28,44,54,58]. For exam-

ple, OpenCL [54] has been adopted for generating accelerators based on data

parallelism. Delite Hardware Definition Language (DHDL) [58] is a domain-

specific language for generating accelerators based on a collection of parallel

patterns. Liquid Metal [11] extends Java to support accelerators with pipeline

parallelism. Legup [28] supports a subset of POSIX threads. Kiwi [44] ex-

tends C# to generate accelerators with threads and channels. These existing

frameworks require parallelism to be specified at compile time and statically

scheduled. As a result, it is difficult to map dynamic or irregular algorithms

to these frameworks. The parallel accelerator framework proposed in this the-

sis supports dynamic parallelism with dynamic work generation and dynamic

scheduling, enabling mapping a wider range of algorithms and achieving good

load balancing.

A few prior studies explored dynamic parallelism in hardware. Li et al. [64]

propose to extract parallelism from irregular applications dynamically on FP-

GAs [64], but only supported limited pipeline parallelism. Our framework sup-

ports broader types of parallelism including data-parallel, fork-join, and general

task-parallel patterns, and also support scalable scheduling of dynamically gen-

147

erated work on multiple processing elements using work stealing. Ramanathan

et al. [91] explored implementing software-based work stealing runtimes on FP-

GAs using OpenCL atomic operations, which incurs high performance and re-

source overheads. In contrast, we propose a hardware architecture that imple-

ments native support for work stealing, which is more efficient, more scalable,

and uses fewer resources.

5.4 Power Management for Systems with Time Constraints

Computing systems often employ power management techniques, which im-

proves energy efficiency by dynamically adjusting the performance level of a

system to match application demand. Power management techniques for in-

teractive or real-time systems also need to take into account the response time

requirements of such systems.

5.4.1 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) is a widely studied technique

for reducing the energy of computing systems. For applications without re-

sponse time requirements, simple interval-based scheduling algorithms [111]

are often used. For example, the Linux CPU power governors [18] are interval-

based. DVFS has also been studied in the context of hardware accelerators.

Linux implements interval-based governors in its devfreq framework [48] for

controlling DVFS of hardware accelerators. As with other reactive approaches,

interval-based scheduling algorithms do not work well for applications that

148

have response time requirements, because their reactions lag behind the work-

load changes. In contrast, the proposed DVFS framework in this thesis is able

to predict the optimal DVFS level by look ahead into the upcoming workload.

Researchers have studied DVFS in the context of hard real-time systems.

One approach uses worst-case execution time (WCET) analysis of tasks to guide

DVFS settings [100]. Although it guarantees that deadlines are met, it can be

overly conservative since actual execution time can be much shorter than worst-

case execution time. As a result, this approach is limited to hard real-time sys-

tems where deadlines must be strictly met. Our framework targets interactive

and soft real-time systems which are more widely used in practice.

DVFS has been studied in the context of resource management in datacen-

ters to achieve energy proportionality, as well as controlling tail latency. PE-

GASUS [68] is a feedback-based DVFS controller that utilizes request latency

statistics to make power management decisions. However, it only responds

to slowly-changing workload variations. Adrenaline [53] uses workload met-

rics to predict tail queries for web services, and boosts DVFS levels accordingly.

A number of studies have also investigated using workload metrics to predict

the execution time in order to inform DVFS decisions for interactive games [46],

video decoding [95], and web browsing [119,120]. However, most of these stud-

ies use metrics that are application-specific and manually identified, which re-

quires domain experts to obtain and does not generalize to other applications.

In contrast, our framework obtains workload metrics with predictors automat-

ically generated using program analysis and transformation. As a result, our

framework does not require domain-specific knowledge to use. We have also

shown that our approach can sometimes generate predictors with the same or

149

better quality than those obtained manually.

5.4.2 Execution Time Prediction

Worst-case execution time analysis is a well-studied topic in hard real-time sys-

tems [85] and has been applied to DVFS for these systems [100]. WCET tries

to calculate an upper bound of a job’s execution time under all possible inputs.

However, it does not estimate a job’s execution time given a specific input. In

contrast, the execution time prediction technique presented in this thesis is able

to predict input-dependent execution time variations.

Mantis [60] is an execution time prediction framework for smartphone appli-

cations, which uses automatically-extracted program features and thus is gen-

eral across different applications. The high-level approach of Mantis is similar to

our work. However, Mantis only considers software programs. Our work pro-

poses an execution time prediction framework for hardware accelerators and

investigates its application to DVFS.

150

CHAPTER 6

CONCLUSION

6.1 Summary

This thesis introduces architectural frameworks that combine novel accelerator

architectures with automated design and optimization frameworks to enable design-

ing high-performance and energy-efficient accelerators with minimal manual

effort.

First, the thesis proposes a framework for automatically generating accel-

erators that can effectively tolerate long, variable memory latencies, which im-

proves performance and reduces design effort by removing the need to manu-

ally create data preloading logic. The framework leverages architecture mech-

anisms such as memory prefetching and access/execute decoupling, as well

as automated compiler analysis to generate accelerators that can intelligently

preload data needed in the future from the main memory.

Second, the thesis introduces a framework for building parallel accelerators

that leverages concepts from task-based parallel programming, which enables

software programmers to quickly create high-performance accelerators using

familiar parallel programming paradigms, without needing to know low-level

hardware design knowledge. The framework uses a computation model that

supports dynamic parallelism in addition to static parallelism, and includes

a flexible architecture that supports dynamic scheduling to enable mapping a

wide range of parallel applications and achieve good performance. In addi-

tion, we designed a unified language that can be mapped to both software and

151

hardware, enabling programmers to create parallel software and parallel accel-

erators in a unified framework.

Third, the thesis proposes a framework that enables accelerators to per-

form intelligent dynamic voltage and frequency scaling (DVFS) to achieve good

energy-efficiency for interactive and real-time applications. The framework

combines program analysis and machine learning to train predictors that can

accurately predict the computation time needed for each job, and adjust the

DVFS levels to reduce the energy consumption.

Our evaluation results show that the proposed frameworks allow designers

to productively create high-quality accelerators for a diverse range of applica-

tions with very little manual effort. We believe the thesis provides a promising

way to address the design complexity problem of accelerators, which is becom-

ing increasingly important as more and more applications will need to rely on

customized accelerators to achieve performance and energy-efficiency gains in

the future.

6.2 Future Directions

6.2.1 Compiler Support for Parallel Accelerators

The parallel accelerator framework proposed in this thesis requires program-

mers to describe the parallel computation using an explicit continuation passing

style. Although this facilitates an efficient hardware implementation, it requires

more effort compared to modern task-based parallel programming frameworks

152

with compiler support (e.g., Cilk Plus) because programmers need to restruc-

ture the code and handle task input and output manually.

To further improve accelerator design productivity, an interesting direction

of future research is to investigate compiler support for the proposed frame-

work. For example, one approach is for the compiler to generate continuation

passing style code from a more traditional fork-join code. The compiler would

need to perform program analysis to determine the input and output of the

tasks, and perform code transformations to convert the code into a continuation

passing style. Another approach is to leverage existing work on supporting

parallel tasks in a compiler’s intermediate representation (IR), which embeds

logically parallel tasks in a program’s control flow graph [96]. The proposed

framework can then serve as a backend for the intermediate representation by

generating hardware from the IR.

6.2.2 Hybrid GPP-Accelerator Work-Stealing Architecture

In most of today’s systems, accelerators and the general-purpose processors

(GPPs) work separately on different tasks. Usually, the accelerators are con-

trolled by the GPPs. After launching a computation job on an accelerator, the

GPPs either need to be idle and wait for the job to complete, or find some other

work to do while waiting. This separation is inefficient because the processing

power of the GPPs is often left unused. Hence, one interesting research direc-

tion is to investigate enabling GPPs and accelerators to work collaboratively

on a problem. Task-based parallel programming provides a good foundation

for achieving this goal because it enables decomposing a problem into many

153

tasks that can potentially run in parallel. Toward this direction, future research

can look into designing a hybrid software runtime and accelerator architecture

where the GPPs and accelerators can execute a task-based parallel program col-

laboratively using work stealing. In this architecture, the GPP cores can not only

steal tasks from other GPP cores, but also from the accelerator. Similarly, the ac-

celerator can also steal tasks from the GPP cores. In this way, the architecture

can achieve high utilization of the available computation resources. In addition,

because the accelerator may be better at processing certain types of tasks while

the GPPs are better at other types, it will be interesting to look into support task

affinity in the architecture, where programmers can express whether it is bet-

ter to execute certain tasks on the GPPs or accelerator, which the work-stealing

algorithm can take into account when scheduling the tasks.

154

BIBLIOGRAPHY

[1] LogiCORE IP system cache v3.0. Xilinx Product Guide. https:
//www.xilinx.com/support/documentation/ip documentation/
system cache/v3 0/pg118 system cache.pdf.

[2] Samsung Exynos Linux kernel drivers. Online Webpage. https:
//github.com/hardkernel/linux/blob/odroidxu3-3.10.y/arch/arm/
mach-exynos/include/mach/exynos-mfc.h.

[3] Verilator. Online Webpage. http://www.veripool.org/wiki/verilator.

[4] Intel Cilk Plus language extension specification, version 1.2. Intel Refer-
ence Manual, 2013. https://www.cilkplus.org/sites/default/files/open
specifications/Intel Cilk plus lang spec 1.2.htm.

[5] OpenMP application program interface, version 4.0. OpenMP Archi-
tecture Review Board, 2013. http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf.

[6] Amazon EC2 F1 instances. Online Webpage, 2017 (accessed Apr 17, 2018).
https://aws.amazon.com/ec2/instance-types/f1/.

[7] Zynq-7000 all programmable SoC. Online Webpage, 2017 (accessed Apr
17, 2018). https://www.xilinx.com/products/silicon-devices/soc/zynq-
7000.html.

[8] Michael Adler, KE Fleming, and Angshuman Parashar. LEAP scratch-
pads: Automatic memory and cache management for reconfigurable
logic. In Proceedings of the 19th International Symposium on Field Pro-
grammable Gate Arrays (FPGA), pages 25–28, 2011.

[9] Selim G. Akl and Nicola Santoro. Optimal parallel merging and sorting
without memory conflicts. IEEE Transactions on Computers, 36(11):1367–
1369, 1987.

[10] Apple. The future is here: iPhone X. Online Webpage, 2017 (accessed
Apr 9, 2018). https://www.apple.com/newsroom/2017/09/the-future-
is-here-iphone-x/.

[11] Joshua S. Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng,
Stephen J. Fink, Rodric M. Rabbah, and Sunil Shukla. A compiler and

155

https://www.xilinx.com/support/documentation/ip_documentation/system_cache/v3_0/pg118_system_cache.pdf
https://www.xilinx.com/support/documentation/ip_documentation/system_cache/v3_0/pg118_system_cache.pdf
https://www.xilinx.com/support/documentation/ip_documentation/system_cache/v3_0/pg118_system_cache.pdf
https://github.com/hardkernel/linux/blob/odroidxu3-3.10.y/arch/arm/mach-exynos/include/mach/exynos-mfc.h
https://github.com/hardkernel/linux/blob/odroidxu3-3.10.y/arch/arm/mach-exynos/include/mach/exynos-mfc.h
https://github.com/hardkernel/linux/blob/odroidxu3-3.10.y/arch/arm/mach-exynos/include/mach/exynos-mfc.h
http://www.veripool.org/wiki/verilator
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://aws.amazon.com/ec2/instance-types/f1/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/

runtime for heterogeneous computing. In Proceedings of the 49th Annual
Design Automation Conference 2012 (DAC), pages 271–276, 2012.

[12] Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew Wa-
terman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic. Chisel:
Constructing hardware in a Scala embedded language. In Proceedings
of the 49th Annual Design Automation Conference (DAC), pages 1216–1225,
2012.

[13] Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading
scheme to reduce data access penalty. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC), pages 176–186, 1991.

[14] Arash Beldachi and José L. Núñez-Yáñez. Run-time power and per-
formance scaling in 28 nm FPGAs. IET Computers & Digital Techniques,
8(4):178–186, 2014.

[15] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simu-
lator. SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[16] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multi-
threaded runtime system. In Proceedings of the Fifth ACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Programming (PPOPP), pages 207–
216, 1995.

[17] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. Journal of the ACM (JACM), 46(5):720–748,
1999.

[18] Dominik Brodowski. CPU frequency and voltage scaling code in
the LinuxTMkernel. Online Webpage. https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt.

[19] F. Warren Burton and M. Ronan Sleep. Executing functional programs on
a virtual tree of processors. In Proceedings of the 1981 Conference on Func-
tional Programming Languages and Computer Architecture (FPCA), pages
187–194, 1981.

156

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

[20] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-
moona, Jason Helge Anderson, Stephen Dean Brown, and Tomasz S.
Czajkowski. LegUp: High-level synthesis for FPGA-based proces-
sor/accelerator systems. In Proceedings of the 19th International Symposium
on Field Programmable Gate Arrays (FPGA), pages 33–36, 2011.

[21] Tao Chen, Alexander Rucker, and G. Edward Suh. Execution time pre-
diction for energy-efficient hardware accelerators. In Proceedings of the
48th International Symposium on Microarchitecture (MICRO), pages 457–469,
2015.

[22] Tao Chen, Shreesha Srinath, Christopher Batten, and G. Edward Suh. An
architectural framework for accelerating dynamic parallel algorithms on
reconfigurable hardware. In submission.

[23] Tao Chen and G. Edward Suh. Efficient data supply for hardware accel-
erators with prefetching and access/execute decoupling. In Proceedings of
the 49th International Symposium on Microarchitecture (MICRO), pages 46:1–
46:12, 2016.

[24] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. In Proceedings of the 19th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 269–284, 2014.

[25] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling
Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadian-
nao: A machine-learning supercomputer. In 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pages 609–622, 2014.

[26] Shaoyi Cheng and John Wawrzynek. Architectural synthesis of compu-
tational pipelines with decoupled memory access. In Proceedings of the
International Conference on Field-Programmable Technology (FPT), pages 83–
90, 2014.

[27] Chipworks. Inside the Apple A7 from the iPhone 5s - updated. Online
Webpage, 2013 (accessed Apr 9, 2018). https://www.chipworks.com/
about-chipworks/overview/blog/inside-apple-a7-iphone-5s-updated.

[28] Jongsok Choi, Stephen Dean Brown, and Jason Helge Anderson. From
pthreads to multicore hardware systems in LegUp high-level synthesis

157

https://www.chipworks.com/about-chipworks/overview/blog/inside-apple-a7-iphone-5s-updated
https://www.chipworks.com/about-chipworks/overview/blog/inside-apple-a7-iphone-5s-updated

for FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(10):2867–2880, 2017.

[29] Jongsok Choi, Kevin Nam, Andrew Canis, Jason Helge Anderson,
Stephen Dean Brown, and Tomasz S. Czajkowski. Impact of cache
architecture and interface on performance and area of fpga-based
processor/parallel-accelerator systems. In Proceedings of the 20th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 17–24, 2012.

[30] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram.
Frame-based dynamic voltage and frequency scaling for a MPEG decoder.
In Proceedings of the 2002 IEEE/ACM International Conference on Computer-
aided Design (ICCAD), 2002.

[31] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengil, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Christian Boehn, Oren Firestein, Alessandro Forin,
Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan, Tamas
Juhasz, Ratna Kumar Kovvuri, Sitaram Lanka, Friedel van Megen, Dima
Mukhortov, Prerak Patel, Steve Reinhardt, Adam Sapek, Raja Seera, Balaji
Sridharan, Lisa Woods, Phillip Yi-Xiao, Ritchie Zhao, and Doug Burger.
Accelerating persistent neural networks at datacenter scale. In HotChips,
2017.

[32] Eric S. Chung, John D. Davis, and Jaewon Lee. LINQits: Big data on
little clients. In Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), pages 261–272, 2013.

[33] Eric S Chung, James C Hoe, and Ken Mai. CoRAM: An in-fabric memory
architecture for FPGA-based computing. In Proceedings of the 19th Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA), pages 97–106,
2011.

[34] Edmund M. Clarke, Masahiro Fujita, Sreeranga P. Rajan, Thomas W. Reps,
Subash Shankar, and Tim Teitelbaum. Program slicing of hardware de-
scription languages. In Proceedings of the 10th Advanced Research Working
Conference on Correct Hardware Design and Verification Methods (CHARME),
pages 298–312, 1999.

[35] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher J. Hughes,
Yong-Fong Lee, Daniel M. Lavery, and John Paul Shen. Speculative pre-
computation: Long-range prefetching of delinquent loads. In Proceedings

158

of the 28th International Symposium on Computer Architecture (ISCA), pages
14–25, 2001.

[36] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees A. Vis-
sers, and Zhiru Zhang. High-level synthesis for FPGAs: From prototyp-
ing to deployment. IEEE Transactions on CAD of Integrated Circuits and
Systems, 30(4):473–491, 2011.

[37] Steve Dai, Mingxing Tan, Kecheng Hao, and Zhiru Zhang. Flushing-
enabled loop pipelining for high-level synthesis. In Proceedings of the 51st
Design Automation Conference (DAC), pages 76:1–76:6, 2014.

[38] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, Oct 1974.

[39] Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of multicore
scaling. In Proceedings of the 38th International Symposium on Computer Ar-
chitecture (ISCA), pages 365–376, 2011.

[40] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implemen-
tation of the Cilk-5 multithreaded language. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 212–223, 1998.

[41] W. Godycki, C. Torng, I. Bukreyev, A. Apsel, and C. Batten. Enabling re-
alistic fine-grain voltage scaling with reconfigurable power distribution
networks. In Proceedings of the 47th International Symposium on Microarchi-
tecture (MICRO), 2014.

[42] Google. VP9 video hardware RTLs. Online Webpage. http://www.
webmproject.org/hardware/vp9/.

[43] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankar-
alingam. Dynamically specialized datapaths for energy efficient comput-
ing. In Proceedings of the 17th International Conference on High-Performance
Computer Architecture (HPCA), pages 503–514, 2011.

[44] David J. Greaves and Satnam Singh. Kiwi: Synthesis of FPGA circuits
from parallel programs. In Proceedings of the 16th IEEE International Sympo-
sium on Field-Programmable Custom Computing Machines, pages 3–12, 2008.

159

http://www.webmproject.org/hardware/vp9/
http://www.webmproject.org/hardware/vp9/

[45] Yan Gu and Samarjit Chakraborty. Control theory-based DVS for interac-
tive 3D games. In Proceedings of the 45th Annual Design Automation Confer-
ence (DAC), 2008.

[46] Yan Gu and Samarjit Chakraborty. A hybrid DVS scheme for interactive
3D games. In 14th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2008.

[47] John L. Gustafson. Reevaluating Amdahl’s law. Communications of the
ACM, 31(5):532–533, 1988.

[48] MyungJoo Ham. devfreq: Generic dynamic voltage and frequency scal-
ing (DVFS) framework for non-CPU devices. Online Webpage. https:
//github.com/torvalds/linux/tree/master/drivers/devfreq.

[49] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. DeSC: Decou-
pled supply-compute communication management for heterogeneous ar-
chitectures. In Proceedings of the 48th International Symposium on Microar-
chitecture (MICRO), pages 191–203, 2015.

[50] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solo-
matnikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis,
and Mark Horowitz. Understanding sources of inefficiency in general-
purpose chips. In Proceedings of the 37th International Symposium on Com-
puter Architecture (ISCA), pages 37–47, 2010.

[51] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. Efficient
execution of memory access phases using dataflow specialization. In
Proceedings of the 42nd International Symposium on Computer Architecture
(ISCA), pages 118–130, 2015.

[52] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the ACM,
4(7):321, 1961.

[53] Chang-Hong Hsu, Yunqi Zhang, Michael A. Laurenzano, David Meisner,
Thomas Wenisch, Jason Mars, Lingjia Tang, and Ronald G. Dreslinski.
Adrenaline: Pinpointing and reining in tail queries with quick voltage
boosting. In Proceedings of the 21st IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2015.

[54] Intel Corporation. Intel FPGA SDK for OpenCL Programming Guide.

160

https://github.com/torvalds/linux/tree/master/drivers/devfreq
https://github.com/torvalds/linux/tree/master/drivers/devfreq

[55] G. P. Jones and Nigel P. Topham. A comparison of data prefetching on
an access decoupled and superscalar machine. In Proceedings of the 30th
International Symposium on Microarchitecture (MICRO), pages 65–70, 1997.

[56] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan,
Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,
Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire
Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni,
Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy
Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris
Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Er-
ick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,
and Doe Hyun Yoon. In-datacenter performance analysis of a tensor pro-
cessing unit. In Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), pages 1–12, 2017.

[57] Wonyoung Kim, M.S. Gupta, Gu-Yeon Wei, and D. Brooks. System level
analysis of fast, per-core DVFS using on-chip switching regulators. In
Proceedings of the IEEE 14th International Symposium on High Performance
Computer Architecture (HPCA), 2008.

[58] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou,
Christos Kozyrakis, and Kunle Olukotun. Automatic generation of effi-
cient accelerators for reconfigurable hardware. In Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA), pages 115–127,
2016.

[59] Sanjeev Kumar, Christopher J. Hughes, and Anthony D. Nguyen. Car-
bon: architectural support for fine-grained parallelism on chip multipro-
cessors. In 34th International Symposium on Computer Architecture, pages
162–173, 2007.

[60] Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun
Yang, Byung-Gon Chun, Ling Huang, Petros Maniatis, Mayur Naik, and
Yunheung Paek. Mantis: Automatic performance prediction for smart-

161

phone applications. In Proceedings of the 2013 USENIX Annual Technical
Conference, 2013.

[61] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache
performance and optimizations of blocked algorithms. In Proceedings of
the Forth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), pages 63–74, 1991.

[62] Charles E. Leiserson. The Cilk++ concurrency platform. In Proceedings of
the 46th Design Automation Conference, pages 522–527, 2009.

[63] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. McPAT: an integrated power, area,
and timing modeling framework for multicore and manycore architec-
tures. In Proceedings of the 42nd International Symposium on Microarchitec-
ture (MICRO-42), pages 469–480, 2009.

[64] Zhaoshi Li, Leibo Liu, Yangdong Deng, Shouyi Yin, Yao Wang, and Shao-
jun Wei. Aggressive pipelining of irregular applications on reconfigurable
hardware. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA), pages 575–586, 2017.

[65] Yun Liang, Kyle Rupnow, Yinan Li, Dongbo Min, Minh N. Do, and Dem-
ing Chen. High-level synthesis: Productivity, performance, and software
constraints. Journal of Electrical and Computer Engineering, 2012:649057:1–
649057:14, 2012.

[66] Kevin T. Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan,
and Thomas F. Wenisch. Thin servers with smart pipes: Designing SoC
accelerators for memcached. In Proceedings of the 40th International Sympo-
sium on Computer Architecture (ISCA), pages 36–47, 2013.

[67] Feng Liu, Soumyadeep Ghosh, Nick P. Johnson, and David I. August.
CGPA: coarse-grained pipelined accelerators. In Proceedings of the 51st
Annual Design Automation Conference, pages 78:1–78:6, 2014.

[68] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and
Christos Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In Proceedings of the ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA), 2014.

[69] Derek Lockhart, Gary Zibrat, and Christopher Batten. PyMTL: A uni-
fied framework for vertically integrated computer architecture research.

162

In Proceedings of the 47th International Symposium on Microarchitecture (MI-
CRO), pages 280–292, 2014.

[70] Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N Patt. Predicting
performance impact of DVFS for realistic memory systems. In Proceedings
of the 45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2012.

[71] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics Magazine, April 1965.

[72] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and eval-
uation of a compiler algorithm for prefetching. In Proceedings of the 5th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 62–73, 1992.

[73] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead
execution: An alternative to very large instruction windows for out-of-
order processors. In Proceedings of the 9th International Symposium on High-
Performance Computer Architecture (HPCA), pages 129–140, 2003.

[74] Nachiappan Chidambaram Nachiappan, Praveen Yedlapalli, Niranjan
Soundararajan, Anand Sivasubramaniam, Mahmut T. Kandemir, Ravi
Iyer, and Chita R. Das. Domain knowledge based energy management
in handhelds. In Proceedings of the 21st IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2015.

[75] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global
history buffer. In Proceedings of the 10th International Conference on High-
Performance Computer Architecture (HPCA), pages 96–105, 2004.

[76] Rishiyur S. Nikhil. Bluespec system verilog: efficient, correct RTL from
high level specifications. In Proceedings of the 2nd International Conference
on Formal Methods and Models for Co-Design (MEMOCODE), pages 69–70,
2004.

[77] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayap-
pan, and Chau-Wen Tseng. UTS: an unbalanced tree search benchmark.
In 19th International Workshop on Languages and Compilers for Parallel Com-
puting (LCPC), pages 235–250, 2006.

[78] OpenCores. AES (Rijndael) IP core. Online Webpage. http://opencores.
org/project,aes core.

163

http://opencores.org/project,aes_core
http://opencores.org/project,aes_core

[79] OpenCores. JPEG decoder in Verilog. Online Webpage. http://opencores.
org/project,djpeg.

[80] OpenCores. SHA cores. Online Webpage. http://opencores.org/project,
sha core.

[81] OpenCores. Video compression systems. Online Webpage. http://
opencores.org/project,video systems.

[82] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Au-
tomatic thread extraction with decoupled software pipelining. In Pro-
ceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 105–118, 2005.

[83] Vinicius Petrucci, Michael A. Laurenzano, John Doherty, Yunqi Zhang,
Daniel Mossé, Jason Mars, and Lingjia Tang. Octopus-Man: QoS-driven
task management for heterogeneous multicores in warehouse-scale com-
puters. In Proceedings of the 21st IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), 2015.

[84] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan
Ragan-Kelley, and Mark Horowitz. Programming heterogeneous systems
from an image processing DSL. ACM Transactions on Architecture and Code
Optimization, 14(3):26:1–26:25, 2017.

[85] Peter P. Puschner and Alan Burns. Guest editorial: A review of worst-case
execution-time analysis. Real-Time Systems, 18(2):115–128, 2000.

[86] Andrew Putnam, Dave Bennett, Eric Dellinger, Jeff Mason, Prasanna Sun-
dararajan, and Susan J. Eggers. CHiMPS: A C-level compilation flow for
hybrid CPU-FPGA architectures. In Proceedings of the International Con-
ference on Field Programmable Logic and Applications (FPL), pages 173–178,
2008.

[87] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R.
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. In Proceedings of the 41st International Symposium
on Computer Architecture (ISCA), pages 13–24, 2014.

164

http://opencores.org/project,djpeg
http://opencores.org/project,djpeg
http://opencores.org/project,sha_core
http://opencores.org/project,sha_core
http://opencores.org/project,video_systems
http://opencores.org/project,video_systems

[88] Andrew Putnam, Susan J. Eggers, Dave Bennett, Eric Dellinger, Jeff Ma-
son, Henry Styles, Prasanna Sundararajan, and Ralph Wittig. Perfor-
mance and power of cache-based reconfigurable computing. In Proceed-
ings of the 36th International Symposium on Computer Architecture (ISCA),
pages 395–405, 2009.

[89] Qualcomm. Snapdragon 820 processor product brief. Qualcomm Product
Brief, 2016. https://www.qualcomm.com/documents/snapdragon-820-
processor-product-brief.

[90] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman P. Amarasinghe. Halide: a language and com-
piler for optimizing parallelism, locality, and recomputation in image pro-
cessing pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 519–530,
2013.

[91] Nadesh Ramanathan, John Wickerson, Felix Winterstein, and George A.
Constantinides. A case for work-stealing on fpgas with opencl atomics.
In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 48–53, 2016.

[92] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and
David M. Brooks. MachSuite: Benchmarks for accelerator design and cus-
tomized architectures. In Proceedings of the 2014 IEEE International Sympo-
sium on Workload Characterization (IISWC), 2014.

[93] James Reinders. Intel Threading Building Blocks: Outfitting C++ For Multi-
Core Processor Parallelism. O’Reilly, 2007.

[94] Arch Robison. A primer on scheduling fork-join parallelism with work
stealing. Technical report, The C++ Standards Committee, 01 2014.

[95] Michael Roitzsch, Stefan Wächtler, and Hermann Härtig. ATLAS: Look-
ahead scheduling using workload metrics. In Proceedings of the 19th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS),
2013.

[96] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embed-
ding fork-join parallelism into LLVM’s intermediate representation. In
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 249–265, 2017.

165

https://www.qualcomm.com/documents/snapdragon-820-processor-product-brief
https://www.qualcomm.com/documents/snapdragon-820-processor-product-brief

[97] Ofer Shacham, Omid Azizi, Megan Wachs, Stephen Richardson, and
Mark Horowitz. Rethinking digital design: Why design must change.
IEEE Micro, 30(6):9–24, 2010.

[98] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David M.
Brooks. Aladdin: A pre-RTL, power-performance accelerator simula-
tor enabling large design space exploration of customized architectures.
In Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), pages 97–108, 2014.

[99] Yiqiong Shi, Chan Wai Ting, Bah-Hwee Gwee, and Ye Ren. A highly ef-
ficient method for extracting FSMs from flattened gate-level netlist. In
International Symposium on Circuits and Systems (ISCAS), 2010.

[100] Dongkun Shin, Jihong Kim, and Seongsoo Lee. Low-energy intra-task
voltage scheduling using static timing analysis. In Proceedings of the 38th
Annual Design Automation Conference (DAC), 2001.

[101] James E. Smith. Decoupled access/execute computer architectures. In Pro-
ceedings of the 9th International Symposium on Computer Architecture (ISCA),
pages 112–119, 1982.

[102] Ryan Smith. Chipworks disassembles Apple’s A8 SoC. Online Webpage,
2014 (accessed Apr 9, 2018). http://www.anandtech.com/show/8562/
chipworks-a8.

[103] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak Fal-
safi, and Andreas Moshovos. Spatial memory streaming. In Proceedings
of the 33rd International Symposium on Computer Architecture (ISCA), pages
252–263, 2006.

[104] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel. CAPI: A coherent
accelerator processor interface. IBM Journal of Research and Development,
59(1):7:1–7:7, Jan/Feb 2015.

[105] Vivienne Sze, Daniel F Finchelstein, Mahmut E Sinangil, and Anantha P
Chandrakasan. A 0.7-V 1.8-mW H.264/AVC 720p video decoder. IEEE
Journal of Solid-State Circuits, 44(11):2943–2956, 2009.

[106] Mingxing Tan, Bin Liu, Steve Dai, and Zhiru Zhang. Multithreaded
pipeline synthesis for data-parallel kernels. In Proceedings of the Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 718–725, 2014.

166

http://www.anandtech.com/show/8562/chipworks-a8
http://www.anandtech.com/show/8562/chipworks-a8

[107] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 1996.

[108] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Gar-
cia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. Conservation cores: Reducing the energy of
mature computations. In Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 205–218, 2010.

[109] Kazutoshi Wakabayashi. C-based behavioral synthesis and verification
analysis on industrial design examples. In Proceedings of the 2004 Confer-
ence on Asia South Pacific Design Automation, pages 344–348, 2004.

[110] Mark Weiser. Program slicing. In Proceedings of the 5th International Con-
ference on Software Engineering, pages 439–449, 1981.

[111] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling
for reduced CPU energy. In Proceedings of the 1st USENIX Conference on
Operating Systems Design and Implementation (OSDI), 1994.

[112] Clifford Wolf. Yosys Open SYnthesis Suite. Online Webpage, 2018 (ac-
cessed Apr 18, 2018). http://www.clifford.at/yosys/.

[113] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. Nav-
igating big data with high-throughput, energy-efficient data partitioning.
In Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), pages 249–260, 2013.

[114] Inc. Xilinx. Vivado high-level synthesis. Online Webpage, 2018 (accessed
Apr 12, 2018). https://www.xilinx.com/products/design-tools/vivado/
integration/esl-design.html.

[115] Xilinx, Inc. Vivado Design Suite User Guide: High-Level Synthesis.

[116] Xilinx, Inc. UG473: 7 Series FPGAs Memory Resources, 2016.

[117] Ke Xu and Chiu-sing Choy. Low-power H.264/AVC baseline decoder for
portable applications. In Proceedings of the 2007 International Symposium on
Low Power Electronics and Design, 2007.

167

http://www.clifford.at/yosys/
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

[118] Hsin-Jung Yang, Kermin Fleming, Michael Adler, and Joel S. Emer. Opti-
mizing under abstraction: Using prefetching to improve FPGA perfor-
mance. In Proceedings of the 23rd International Conference on Field pro-
grammable Logic and Applications (FPL), pages 1–8, 2013.

[119] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi. Event-based
scheduling for energy-efficient QoS (eQoS) in mobile web applications.
In Proceedings of the 21st IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2015.

[120] Yuhao Zhu and Vijay Janapa Reddi. High-performance and energy-
efficient mobile web browsing on big/little systems. In Proceedings of the
19th IEEE International Symposium on High-Performance Computer Architec-
ture (HPCA), 2013.

168

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Design Complexity of Accelerators
	Thesis Contributions and Organization

	Memory Optimization Framework for Efficient Data Supply
	Introduction
	Overview
	System Architecture
	High-Level Synthesis
	Impact of Memory Accesses on Accelerator Performance
	Data Preloading Framework

	Prefetching
	Decoupled Access/Execute
	Access Unit
	Memory Units
	Execute Unit
	Deadlock Avoidance
	Customization of Memory Units
	Automated DAE Accelerator Generation

	Evaluation
	Methodology
	Experimental Setup
	Baseline Validation
	Performance Results
	Area, Power, and Energy Results
	Design Space Exploration: Queue Size

	Parallel Accelerator Framework
	Introduction
	Computation Model for Dynamic Parallelism
	Primitives
	Continuation Passing
	Scheduling the Computation
	Function Calls

	Accelerator Architecture
	FlexArch Tile and PE Architecture
	LiteArch Tile and PE Architecture
	Networks
	Memory Hierarchy
	CPU-Accelerator Interface

	Design Methodology and Framework
	Architectural Template
	Algorithm Description Format
	Accelerator RTL Generation

	Unified Framework for Parallel Accelerators and Software
	CPPWD-TBB Library
	Programmability

	Evaluation
	Benchmarks
	Design Effort Comparison
	Hardware Prototype on Today's FPGA
	Simulation Methodology
	Performance Results
	Resource Utilization
	Power and Energy Efficiency
	Cache Size Customization
	Parallel Software with Unified Description

	Predictive DVFS Framework for Energy Efficiency
	Introduction
	Fine-grained DVFS for Hardware Accelerators
	System Setup
	Tasks and Jobs
	Execution Time Variation
	Current Approaches to DVFS

	Predictive DVFS Framework for Hardware Accelerators
	Source of Execution Time Variation
	Features from Hardware Accelerators
	Identifying and Obtaining Features
	Prediction Model
	Hardware Slicing
	DVFS Model
	Predictor Operation Modes
	Case Study

	Evaluation
	Methodology
	Experimental Setup
	Results for ASIC Accelerators
	Results for FPGA-based Accelerators
	Extensions

	Related Work
	High-Level Design Methodologies for Accelerators
	High-Level Synthesis
	Hardware Generation Languages

	Data Supply for Accelerators
	Data Supply for In-Core Accelerators
	Memory Architecture for Standalone Accelerators
	Memory Optimizations in High-Level Synthesis

	Parallel Accelerators
	Task-Based Parallel Programming
	Design Methodologies for Parallel Accelerators

	Power Management for Systems with Time Constraints
	Dynamic Voltage and Frequency Scaling
	Execution Time Prediction

	Conclusion
	Summary
	Future Directions
	Compiler Support for Parallel Accelerators
	Hybrid GPP-Accelerator Work-Stealing Architecture

	Bibliography

