
Hyperscale Hardware Optimized Neural Architecture Search
Sheng Li
Google
USA

lsheng@google.com

Garrett Andersen
Google
USA

garrettaxel@google.com

Tao Chen
Google
USA

taoc@google.com

Liqun Cheng
Google
USA

liquncheng@google.com

Julian Grady
Google
USA

jpg@google.com

Da Huang
Google
USA

dahua@google.com

Quoc V. Le
Google
USA

qvl@google.com

Andrew Li
Google
USA

andrewyli@google.com

Xin Li
Google
USA

xinlix@google.com

Yang Li
Google
USA

yangliyl@google.com

Chen Liang
Google
USA

crazydonkey@google.com

Yifeng Lu
Google
USA

yifenglu@google.com

Yun Ni
Google
USA

yunn@google.com

Ruoming Pang∗
Apple
USA

ruoming@gmail.com

Mingxing Tan∗
Waymo
USA

tanmingxing@waymo.com

Martin Wicke
Google
USA

wicke@google.com

Gang Wu
Google
USA

wgang@google.com

Shengqi Zhu
Google
USA

sqzhu@google.com

Parthasarathy Ranganathan
Google
USA

parthas@google.com

Norman P. Jouppi
Google
USA

jouppi@google.com

ABSTRACT
Recent advances in machine learning have leveraged dramatic in-
creases in computational power, a trend expected to continue in
the future. This paper introduces the first Hyperscale Hardware
Optimized Neural Architecture Search (H2O-NAS) to automatically
design accurate and performant machine learning models tailored
to the underlying hardware architecture. H2O-NAS consists of three

∗Work done while at Google

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582049

key components: a new massively parallel “one-shot” search algo-
rithm with intelligent weight sharing, which can scale to search
spaces of 𝑂 (10280) and handle large volumes of production traf-
fic; hardware-optimized search spaces for diverse ML models on
heterogeneous hardware; and a novel two-phase hybrid perfor-
mance model and a multi-objective reward function optimized for
large-scale deployments.

H2O-NAS has been implemented around state-of-the-art ma-
chine learning models (e.g. convolutional models, vision transform-
ers, and deep learning recommendation models) and deployed at
zettaflop scale in production. Our results demonstrate significant
improvements in performance (22% ∼ 56%) and energy efficiency
(17% ∼ 25%) at same or better quality. Our solution is designed
for large-scale deployment, streamlining privacy and security pro-
cesses and reducing manual overhead. This facilitates a smooth and
automated transition from research to production.

343

https://doi.org/10.1145/3582016.3582049
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582049&domain=pdf&date_stamp=2023-03-25

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Li et al.

CCS CONCEPTS
•Computer systems organization→Neural networks; •Com-
puting methodologies→Machine learning.

KEYWORDS
Hyperscale Hardware, Accelerator, TPU, GPU, Machine Learning,
Deep Learning, Neural Architecture Search, Pareto Optimization

ACM Reference Format:
Sheng Li, Garrett Andersen, Tao Chen, Liqun Cheng, Julian Grady, Da
Huang, Quoc V. Le, Andrew Li, Xin Li, Yang Li, Chen Liang, Yifeng Lu,
Yun Ni, Ruoming Pang, Mingxing Tan, Martin Wicke, Gang Wu, Shengqi
Zhu, Parthasarathy Ranganathan, and Norman P. Jouppi. 2023. Hyperscale
Hardware Optimized Neural Architecture Search. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3582016.3582049

1 INTRODUCTION
Datacenter machine learning (ML) accelerators (e.g. GPUs and
TPUs) have been fueling rapid progress in ML research and ap-
plications. As larger and more complex ML models are demanding
even faster and cheaper compute [39, 52], it has become increas-
ingly important to tap into the full potential of datacenter ML hard-
ware. However, ML model architectures are currently not optimized
for the heterogeneity and specialization in hardware accelerators,
stranding signficant performance benefits.

Concurrently, neural architecture search (NAS) [16, 31, 44, 59, 60]
has shown significant success in automatically designing ML model
architectures that rival the best human-designed models. Recent
studies on multi-objective and hardware-aware NAS [6, 7, 15, 17, 19,
22, 23, 29, 30, 32, 34, 50, 51, 53, 55, 58] have further shown promising
results in designing accurate and performant MLmodels in research
settings. However, significant challenges remain, preventing NAS
from being deployed in production environments with heteroge-
neous hardware accelerators, diverse ML model populations, and
evolving deployment constraints.

To overcome these challenges, we present Hyperscale Hardware
Optimized Neural Architecture Search (H2O-NAS). Our approach
improves on traditional NAS in the following ways:

• We design a massively parallel single-step reinforcement
learning (RL) search algorithm to learn policies and model
weights simultaneously from real-time production traffic,
eliminating the need for lengthy retraining and fine-tuning
for model deployment.

• We co-design the RL-based NAS search algorithm with hard-
ware optimized search spaces for various ML domains on
heterogeneous hardware accelerators and introduce a first-
of-a-kind search space with weight-sharing for Deep Learn-
ing Recommendation Models (DLRMs).

• We propose a simple yet effective multiple objective reward
function and a novel two-phase hybrid performance model
for accurate and cost-effective performance prediction for
production-scale NAS.

• We open-source two new model families: CoAtNet-H (a vi-
sion transformer, or VIT) and EfficientNet-H (a convolutional

neural network, or CNN), which demonstrate up to more
than 1.8X performance and energy efficiency gains over state-
of-the-art research models with neutral model accuracy.

• Wepresent our deployment of H2O-NAS at zettaflop scale for
Google productionworkloads, withoutmanual interventions,
resulting in significant performance (22% ∼ 56%) and energy
efficiency (17% ∼ 25%) gains at scale with neutral or better
model accuracy/quality.

Section 2 introduces a taxonomy of the state-of-the-art NAS and
the challenges in hyperscale production environments. We provide
an overview of H2O-NAS in Section 3. We then describe the design
details of the three pillars of H2O-NAS: search algorithms with the
in-memory data pipeline in Section 4, search spaces with weight-
sharing super-networks in Section 5, and multidimensional search
objectives in Section 6. In Section 7, we discuss the results of H2O-
NAS on both the state-of-the-art ML models and deployment at
scale. Related work is discussed in Section 8.

2 NEURAL ARCHITECTURE SEARCH AND
THE CHALLENGES OF HYPERSCALE

Designing highly accurate and performant ML models is a multi-
disciplinary challenge that necessitates a deep understanding of
machine learning algorithms, computer architecture, and system
design. Neural Architecture Search (NAS) approaches this chal-
lenge as an optimization problem. NAS conducts an automated
multi-objective design space exploration with a given high level
design constraints to find Pareto-optimized ML models. This sec-
tion provides an introduction to the design of state-of-the-art NAS,
and outlines the challenges in designing, optimizing, and deploying
NAS at hyperscale.

2.1 Taxonomy of the State-of-the-Art NAS
A significant body of research has been dedicated to understanding
the design of NAS. At a high level, the design of NAS can be char-
acterized by four overarching dimensions: 1) search strategies, 2)
search algorithms, 3) search spaces, and 4) search objectives. The
center greyscale area in Figure 1 illustrates a traditional/generic
one-shot NAS with its search algorithm, search space, and search
objectives.

Search Strategies refer to the general method of how NAS ex-
plores its model architecture search space. There are two major
strategies:multi-trial and one-shot. Multi-trial NAS [50, 51] explores
the search space by sampling and evaluating different model archi-
tectures in the search space through separate and independent trials.
While multi-trial NAS is straightforward to implement, it can be
cost-prohibitive if the individual trials are large in scale. In contrast,
one-shot NAS [4] constructs a single super-network that encom-
passes all possible model architectures in the search space as sub-
graphs. The different candidates are then sampled and evaluated
as different parts of the super-network in each training/searching
step. By designing the super-network such that weights and graph
structure are effectively shared between sub-graphs, one-shot NAS
can be made highly efficient.

Search algorithms govern the progress of NAS, by determin-
ing the model architecture candidates to be considered in each step
based on rewards consisting of performance and quality metrics

344

https://doi.org/10.1145/3582016.3582049
https://doi.org/10.1145/3582016.3582049

Hyperscale Hardware Optimized Neural Architecture Search ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 1: System Design of Hyperscale Hardware Optimized
NAS (H2O-NAS). Our contributions are highlighted in the
colored areas, while the traditional one-shot NAS is shown
in the center area in greyscale.

from the architecture candidates evaluated the current step. An
effective search algorithm must quickly find the Pareto-front with
respect to the search objectives by sampling a small portion of the
candidates in the search space. There are three primary search algo-
rithms for NAS: reinforcement learning (RL) based search algorithms,
gradient-based search algorithms, and evolution based algorithms.
RL-based search algorithms are highly flexible and can work with
all kinds of rewards. Gradient-based search algorithms eliminates
the need for an RL controllers by making the reward differentiable
with a softmax layer over all model candidates. Evolution-based
search algorithms allow for model architecture candidates to mutate
and evolve to find the optimal model architectures, similar to gene
mutations in a biological environment. However, evolution based
search algorithms cannot be applied to one-shot NAS, because they
require the rewards to be comparable across steps. In contrast, for
one-shot NAS, the rewards depend on the amount of data the model
has already trained on, and thus, are only comparable within each
training step.

Search spaces provide the fundamental components for con-
structing the desiredMLmodels. Search spaces must be co-designed
with search algorithms. For example, if one-shot is chosen as the
search strategy, a weight-sharing super-network is required. How-
ever, such a super-network cannot be easily constructed for an
arbitrary search space. Inclusion of all the options in an enormous
search space usually leads to a suboptimal outcome, as the search
space becomes too large for even state-of-the-art search algorithms
to explore [4, 43]. Therefore, in order to find architectures that
perform well on specific hardware, the search spaces must be aug-
mented to include hardware-friendly operations. This is particularly
important as search spaces that are tailored for hardware are able
to take advantage of the unique features and optimizations pro-
vided by that hardware, which leads to significant improvements
in performance and efficiency.

Search objectives determine the optimization targets, which in
turn determine the Pareto-optimization of the ML models. NAS has
evolved from single-objective optimization [59] on quality (model
accuracy) to multi-objective optimization that considers both qual-
ity and performance. Combining quality and performance objec-
tives is a major challenges for all NAS systems. Reward functions,
which combine quality and performance objectives, have evolved
from the multiplicative form [29, 50] to the more stable additive
form [4]. While the quality objective is always some form of model
accuracy, performance objectives vary widely and include model
size (as a proxy for hardware memory usage) [7], model FLOPs (as a
proxy of hardware execution performance) [51], and true hardware
performance (since performance proxies have been shown to have
poor accuracy and correlation [7, 29]).

The center greyscale area in Figure 1 illustrates an example
of traditional and generic one-shot NAS design. The search be-
gins by constructing a one-shot super-network that represents the
search space, consisting of various categorical parameters to govern
sub-network selection. Iteratively, model architecture candidates
are sampled, and their corresponding sub-networks are trained to
generate quality signals. Additionally, the categorical parameters,
representing the evaluated sub-networks, are also used to produce
performance signals. By merging the quality and performance sig-
nals, a multi-objective reward is formed, which is then utilized by
a reinforcement learning (RL) controller to adjust the probabili-
ties of the categorical parameters. This process continues until the
end of the search, at which point the parameters with the highest
probability are used to construct the optimal neural architecture.

2.2 Challenges of Hyperscale Hardware
Despite the promising results from academic research, significant
challenges hinder the use of NAS to benefit production-grade ML
models on hyperscale hardware accelerators.

Challenge of Deployment: Dynamic and heterogeneous ML
production environments impose significant challenges when de-
ploying NAS. Deploying new model architectures into production
systems requires additional optimizations, including lengthy re-
training and fine-tuning, to bridge the gaps between the training
datasets and live production data. Moreover, production environ-
ments are subject to various constraints, including model size, train-
ing and serving costs, end-to-end service latency, and more. These
constraints are essential for the deployability of a ML model, yet
they are difficult to consider during model research and develop-
ment. Due to the difficulty in imposing these constraints directly
on search spaces, NAS has been unable to directly improve the
quality or performance of production models. Models discovered
using NAS usually need signficant manual intervention to meet
production constraints, often losing quality or efficiency in this
complex process.

Challenge of Efficiency: NAS can consume large amounts of
hardware resources. This is especially true when the optimization
targets are state-of-the-art giant production models training on
tens of thousands of TPUs or GPUs [35, 42]. Efficiency for NAS at
hyperscale is multifaceted, including NAS efficiency (total computa-
tion needed for the neural architecture search itself), andML model
efficiency (performance/efficiency of the NAS optimized models on

345

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Li et al.

target hardware). Datacenter accelerators such as TPUs and GPUs
have complex and sometimes eclectic hardware, often requiring
non-obvious tuning for peak performance. In particular, their per-
formance behavior is often highly non-linear, withmany interacting
bottlenecks exposing performance cliffs that are difficult to predict
and optimize around. Therefore, improving ML model efficiency
requires sophisticated search space designs to ensure the final mod-
els are composed with hardware-friendly operations/layers and
hardware-specialized optimizations that allow them to make full
use of the available hardware.

Challenge of Scale:With hyperscale ML accelerators and mod-
els, NAS must be designed to leverage the unprecedented amount
of computation resources. Many techniques that work effectively
in a smaller scale research environments often fail in production
environments where the scale is much larger. For instance, obtain-
ing accurate and fast performance search objectives directly from
hardware works well in a (smaller and stabler) research setting but
becomes unmanageable for continuous NAS optimizations on giant
ML models running on hundreds of ML accelerators. Additionally,
to scale with the number of tasks, search algorithms must be specif-
ically designed to make use of the massive parallelism available in
hyperscale accelerators.

3 SYSTEM DESIGN
In response to these challenges, we re-design and optimize NAS
holistically for hyperscale ML accelerators, as highlighted by the
colored regions in Figure 1. We follow a few key high-level de-
sign principles to tackle distinct challenges and constraints from
production environments:

Design for Deployment: To avoid a lengthy journey from
model research to production caused by the significant training
data shift from research to production, we design H2O-NAS to use
real-time production traffic directly as training data. Because of
data privacy and security regulations, production traffic cannot
be persisted in non-volatile media nor examined by humans. We
therefore implement a pure in-memory data pipeline to comply
with these regulations, shown as 1 in Figure 1. We then design a
new RL search algorithm to learn both ML model weights and the
architecture choices in a single step. This allows us to use produc-
tion traffic without creating and curating a separate evaluation data
stream, shown as 2 in Figure 1. Optimizing for deployment also
involves dealing with different models, hardware, and ML prod-
uct launch constraints. To address this challenge, we design a new
multi-objective reward function (shown as 5 in Figure 1). This
new reward function enables our H2O-NAS to generate models for
various target hardware, optimized for training or serving, while
performing a complex constrained multi-objective optimization
that takes into account launch criteria such as quality, throughput,
latency, and model size.

Design for Efficiency: As described in Section 2.2, the effi-
ciency of NAS has two main aspects: NAS efficiency and ML model
efficiency. We have found that only one-shot optimization can per-
form at the scale required. We therefore use a one-shot NAS with
an RL-based search algorithm as shown in 2 in Figure 1. The
RL-based search algorithms use significantly fewer resources than
gradient-based search algorithms, because RL-based approaches

only need to activate the sub-network under consideration in each
step, while gradient-based approaches have to compute gradients
for all sub-networks to compute a full set of gradients.

However, designing the search space and weight-sharing super-
network for RL-based NAS is complex, and there was no existing
design for DLRM. We thus design the first such search space and
weight-sharing super-network, shown as 3 in Figure 1. We further
optimize the search spaces for DLRM, VIT, and CNN, so that these
search spaces contains hardware-friendly ops and layers to compose
the final models with high ML model efficiency.

Design for Scale: To ensure our design can support giant pro-
duction models, we optimize the aforementioned new single-step
RL algorithm to train policies and model weights on hyperscale
ML accelerators in parallel, shown as 2 in Figure 1. Next, we de-
sign an ML-driven hardware performance model using two-phase
(pre-training and fine-tuning) training, shown as 4 in Figure 1.
This new scalable performance model provides accurate and low-
cost performance signals, improving the efficiency of architectural
design space exploration by orders of magnitude.

4 HYPERSCALE HARDWARE OPTIMIZED
SEARCH ALGORITHMWITH IN-MEMORY
DATA PIPELINE

Search algorithms govern the neural architecture search process. It
is important to co-design the search algorithm and data pipeline
for maximum efficiency.

4.1 A Unified Single Step Search Algorithm
As described in Section 3, we develop an in-memory data pipeline
to comply with data privacy and security regulations. Because
of the large volume of production data, it is prohibitively expen-
sive to splice production data streams into two independent and
statistically stable datasets for training and validation within the
in-memory pipeline. Unfortunately, all existing NAS designs [4,
31, 59, 60], regardless of their choices on search strategies, algo-
rithms, or objectives, require two datasets – the training dataset (for
learning model weights𝑊) and the validation dataset (for learn-
ing model architecture choices 𝛼) – to prevent over-fitting and
ensure generalization. Figure 2 illustrates this requirement using
the TuNAS [4] algorithm as an example. This requirement stems
from the nature of NAS, where training shared model weights𝑊 is
similar to vanilla training to optimize training loss, while learning
the choice of model architecture 𝛼 is similar to model evaluation
on validation loss. To prevent information leak from evaluation
to training, separating training and validation sets are necessary.
This is especially crucial for NAS with smaller datasets such as
Imagenet [45], where the same data is re-used multiple times to
train a model. Without separate datasets, NAS trains shared model
weights𝑊 with the same data used for evaluating the choices of 𝛼
to determine the future decisions from the RL controller, resulting
in over-fitting and poor generalization.

In H2O-NAS, We co-design the RL search algorithm to lever-
age production traffic and eliminate the need for separate training
and validation datasets. With vast amount of production traffic
data, it is feasible to use each data sample only once. Moreover,
our in-memory data pipeline is designed to ensure that learning

346

Hyperscale Hardware Optimized Neural Architecture Search ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 2: Baseline TuNAS Search Algorithm with Alter-
nating Steps to Learn Policy 𝜋 and Model Weights 𝑊

(at Left with Greyscale) Vs. H2O-NAS Massively Parallel
Search Algorithm with Unified Single Step to Learn policy
𝜋 and Model Weights𝑊 (at Right with Colors)

model architecture choices 𝛼 always precede training shared model
weights𝑊 in each step of NAS, as illustrated in Figure 2. Specifically,
we guarantee that every incoming data is initially used by learning
model architecture choices before it can be used by training model
weights. As a result, H2O-NAS always learns the choices of 𝛼 using
fresh data that has never been used for training shared weights𝑊
before, preventing over-fitting and ensuring generalization without
the need for separate training and validation datasets.

As mentioned in Section 3, we opt for the one-shot search strat-
egy and RL search algorithm to maximize H2O-NAS efficiency. To
the RL search algorithm, the search space consists of a set of cate-
gorical decisions, where each decision controls a different aspect
of the network architecture. During a search, the RL algorithm
learns a policy 𝜋 , a probability distribution over a collection of
independent multinomial variables. Each variable controls a de-
cision of the search space. The RL algorithm samples from 𝜋 to
get the search space decisions to compose high quality architec-
tures 𝛼 . The RL algorithm also trains a set of shared neural network
weights𝑊 , which are then used to compute the quality of candidate
architectures sampled.

4.2 Parallelized Single Step Search Algorithm
H2O-NAS uses a single-step search algorithm to learn both shared
weights 𝑊 and the policy 𝜋 used to decide model architecture
candidates 𝛼 . To tap into the full potential of the hyperscale ML

hardware, we enhance the RL search algorithm to run on hundreds
of accelerators in parallel, where each search step has the following
three stages as shown in Figure 2:

(1) Each accelerator (e.g., a TPU core or a GPU card) first samples
a different neural architecture 𝛼𝑖 from 𝜋 , then runs a forward
pass with the shared weights𝑊 to estimate the quality𝑄 (𝛼𝑖)
of the sampled architecture using a single batch of examples
from the training data.

(2) The accuracy 𝑄 (𝛼𝑖) and performance 𝑇 (𝛼𝑖) jointly deter-
mine the reward 𝑅(𝛼𝑖) (See Section 6 for objective and re-
ward details) on hardware core 𝑖1. Then all cores conduct
cross-shard updates on policy 𝜋 using REINFORCE [54].

(3) In parallel with the policy 𝜋 update, all cores also update the
shared weights𝑊 with a cross-shard gradient update w.r.t.
all the architecture candidates 𝑄 (𝛼𝑖) on the same batch of
examples from the training set.

At the end of the search, the final architecture is obtained by inde-
pendently selecting the most probable value for each categorical
decision in 𝜋 .

Figure 2 compares H2O-NAS with TuNAS, a state-of-the-art RL
search algorithm, in detail. TuNAS alternates between learning
the shared weights𝑊 on training data and learning the policy 𝜋

using REINFORCE [54] on validation data. The policy 𝜋 determines
the choices of model architectures 𝛼 . TuNAS was also not built
for hyperscale deployments, and therefore lacks parallelism which
could leverage hyperscale ML hardware. Our single-step learning
algorithm unifies learning of policy 𝜋 and shared weights𝑊 with
the same dataset for the first time. Note that this unified learning ap-
proach needs access to a large amount of data. Two-step learning is
still needed for small-scale research datasets such as Imagenet [45].

5 HARDWARE OPTIMIZED SEARCH SPACE
A search space includes primitive operations (e.g., layers, ops, ac-
tivation functions), a weight-sharing super-network if applicable,
and rules for NAS to compose ML models. It is also the key link
to connect neural architectures with hardware architectures. A
hardware-optimized search space contains hardware-friendly ML
ops/layers to build final models that are inherently optimized for
target hardware for high efficiency. Modern ML accelerators in-
cluding TPUs and GPUs are massively parallel machines, where
matrix/tensor units (called MXUs in TPUs [11, 25, 36] and Tensor
Cores in GPUs [9, 37]) are the most important components. To
fully utilize the capabilities of hardware platforms, search spaces
need to maximize the parallelism within tensor units and the paral-
lelism among tensor units and the rest of the hardware subsystems,
including vector processing units (VPU), memory, and networking.

The design of a search space and the associated super-network
also affect NAS efficiency significantly. Unfortunately, despite deep
learning recommendation models (DLRMs) being a critical ML
model domain, prior work on NAS for DLRM is scarce2. Therefore,
we build the first DLRM search space with a carefully designed

1For simplicity of exposition, we assume that each model candidate uses a single core.
This is not a restriction of the algorithm, as each model can use many cores.
2The only related work is the DRLM search space and super-network design for
gradient-based one-shot NAS [27], which is unsuitable for the RL-based one-shot
NAS that we choose for its better NAS efficiency.

347

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Li et al.

Figure 3: DLRM Model Diagram and H2O-NAS Search
Space Design with Hybrid Fine-grained and Coarse-grained
Weight-sharing Super-network. It is the first design for
DLRM on RL-based one-shot NAS.

super-network specifically for RL-based one-shot NAS, and opti-
mize it for model efficiency for hardware. For CNN and VIT, we
augment existing search spaces with hardware-specific optimiza-
tions.

5.1 Design of DLRM Search Space
As shown in Figure 3, modern deep learning recommendation mod-
els (DLRMs) [3, 21, 35] handle both dense (continuous) features
and sparse (categorical) features describing higher-level attributes
(e.g. users and products). The dense features are processed by the
optional bottom MLP (multi-layer perceptron) layers, while the
sparse features are first processed by the embedding layers. The
processed dense and sparse features are then concatenated and
processed by the top MLP layers before the final sigmoid layer
produces a prediction.

5.1.1 Search Space for MLP and Embedding Layers. Figure 3 and
Table 5 (in Appendix A) show the search space designed for DLRM.
For the embedding layers, we sweep both embedding width and
vocabulary size for each embedding table to strike a balance be-
tween accuracy and efficiency. The larger the embedding tables are,
the higher the DLRM model quality will be, at the cost of higher
memory capacity and bandwidth requirements. For the MLP layers,
our search space supports searching for layer width, layer depth,
and low-rank matrix-factorization options. Low-rank matrix factor-
ization in MLP layers has the potential to reduce compute load but
may cause quality losses. Low-rank matrix factorization in deep
learning [47] is different from that in traditional data science, be-
cause both the rank and the weights of the low-rank matrices in
deep learning can be directly learned without the existence of the

original full-rank matrix. However, it is challenging to find the ap-
propriate rank to balance the quality and performance. Our search
space enables searching for the best rank to reduce total compute
while maintaining sufficient parallelism on all tensor dimensions
to maximize parallelism within the hardware tensor units. These
performance optimizations are always done together with model
quality optimizations.

The search space size for jointly optimizing embedding and
dense layers is 𝑂 (10282) as shown in Table 5. While MLPs run on
matrix/tensor units and are commonly compute-bound, embedding
layers do not run on matrix/tensor units and are memory-bound.
Since embedding layers are usually distributed across ML accelera-
tors [35], they are also network-bound. Balancing the load between
embedding andMLP computing plays an important role in maximiz-
ing the parallelism across compute, memory and network, which
impacts model performance significantly. The embedding layers
and MLP layers are responsible for model memorization and gen-
eralization, respectively. Thus, the balance between embeddings
and MLP also changes the balance between model memorization
and generalization, which affects model quality significantly. With
its search space supporting all dimensions of embedding and MLP
layers, H2O-NAS for DLRM can perform Pareto-optimization of
quality and performance by jointly searching for embedding and
MLP architectures.

5.1.2 Weight-Sharing Super-Network for DLRM. A key enabler of
one-shot NAS is a super-network with many redundant weights,
with different sub-networks representing all the neural architecture
candidates in the search space. During a search, NAS samples and
trains a different sub-network each time a candidate is evaluated. A
super-network relies on weight sharing to keep the total memory
size of the network in check and ensure that each path of trainable
weights in the super-network gets a sufficient gradient signal [4].
However, sharing weights among model candidates also causes
significant interference between different sub-networks/candidates,
making the design of the weight-sharing super-network critical to
the success of one-shot NAS.

Weight-sharing for super-networks can be implemented at vary-
ing granularities. Coarse-grained weight-sharing keeps the sub-
networks on parallel paths independent, because all sub-network
candidates must be evaluated during each search step and thus
cannot share weights. Fine-grained weight-sharing [4, 49] shares
weights among common blocks and kernels on critical paths among
parallel sub-networks. Fine-grained weight sharing is more efficient
in both memory utilization and provides more gradient updates
for all weights. On the other hand, coarse-grained weight sharing
causes less interference among different model candidates, at the
cost of insufficient training on the weights.

Our weight sharing super-network design for DLRM shown in
Figure 3 uses a hybrid of fine-grained and coarse-grained weight-
sharing to balance the trade-off between NAS efficiency and search
quality. To support weight-sharing in embedding tables, we create
a single embedding vector with the largest possible embedding
width for each row in a given embedding table, shown as 1 in
Figure 3. This is fine-grained weight-sharing, because smaller em-
bedding widths are simulated by masking all but the first 𝐷 embed-
dings (reusing the weights from candidates with larger embeddings).

348

Hyperscale Hardware Optimized Neural Architecture Search ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(a) MBConv and F-MBConv Architectures,
with searchable parameters boldened. Ac-
tivation functions are also searchable but
omitted for simplicity.

Operational Intensity (log scale)

TO
Ps

/s
ec

 (l
og

 s
ca

le
)

0.1

1

10

10
0

1 10 100 1000

Roofline (CMEM Rd) Roofline (CMEM Wr)
Roofline (HBM) MBC(32) F-MBC(32)

MBC(128) F-MBC(128)

(b) Rooflines of MBConv (MBC) and F-
MBConv (F-MBC) on TPUv4i [24], showing
fusedMBConvs always have better through-
put (FLOPS)

La
te

nc
y

(µ
s)

0

200

400

600

MCB(32) F-MBC(32) MBC(128) F-MBC(128)

(c) Latency of MBConv (MBC) and F-MBConv
(F-MBC) on TPUv4i [24], showing the depen-
dence on both throughput (FLOPS) and total
computing load (total FLOPs).

Figure 4: Hardware Implications of Model Architectures, Roofline, and Latency on MBConv (MBC) and Fused MBConv (F-
MBC) on TPUv4i [24]. The #s in MBC(#)/F-MBC(#) refer to the input and output depth. Input depth always equals to output
depth.

When searching for an embedding table with a different vocabulary
size, we use coarse-grained weight-sharing, shown as 2 in Figure 3.
Each vocabulary size is represented with a different embedding
table to avoid harmful interactions between candidates. We use
fine-grained weight-sharing for MLP layers. Our super-network
creates only one matrix of weights with the largest possible input
(Nin) and output (Nout) size for each MLP layer. Smaller Nin and
Nout sizes are simulated by retaining only the upper left sub-matrix
of weights and masking out the rest, shown as 3 in Figure 3. For
MLP layers with low-rank factorization, fine-grain weight-sharing
is also used by low-rank weight matrices to search for the best rank,
shown as 4 in Figure 3.

5.2 Search Spaces for CNN and VIT
Table 5 shows our search spaces for CNN and VIT models. These
search spaces are built atop previous designs for CNN [4, 29] and
VIT [8]. The full details of CNN and VIT architectures can be found
in Table 5 in Appendix A. We use the dynamically fused MBConv
in both, showcasing how the search spaces support maximizing
hardware parallelism across the compute and memory subsystems.

As shown in Figure 4a, an MBConv is a macro structure, con-
sisting of an expansion layer of 1x1 convolutions, a depthwise
convolution, and a projection layer of 1x1 convolutions, together
with activation, batch normalization, and skip-connections. A fused
MBConv (F-MBConv) combines depthwise convolutions with the
expansion or projection layer as a vanilla convolution. While MB-
Conv has less total compute (i.e., FLOPs), it also has lower opera-
tional intensity (see Figure 4b), which leads to a lower compute rate
(FLOPs/s). F-MBConv has a higher operational intensity and thus
higher throughput (FLOPs/s), but comes with more total compute
workload. Thus, MBConv may be faster or slower than F-MBConv
depending on the model architecture details. For example, as shown
in Figure 4b and 4c, while fused MBConv with 32 input/output
channel depth (F-MBC(32)) has higher operational intensity and
better latency than MBConv (MBC(32)), fused MBConv with 128
input/output channel depth (F-MBC(128)) has higher operational

intensity but worse latency than MBConv (MBC(128)). Moreover,
MBConv and F-MBConv contribute differently to the final model
accuracy. By including both MBConv and F-MBConv in the search
space, our NAS can dynamically fuse MBConv at different layers
to Pareto-optimize model quality and performance.

6 SEARCH OBJECTIVES FOR HYPERSCALE
HARDWARE

A reward function combines the quality and performance results
of sampled architecture candidates for the RL search controller to
select the next batch of candidates.

6.1 A Single-Sided Multi-Objective Reward
Function

Since hyperscale optimized NAS must handle heterogeneous hard-
ware (including different generations of TPUs and GPUs) and vari-
ous model launch criteria (including throughput, latency, and mem-
ory capacity), we propose a new single-sided ReLU multi-objective
reward function as shown in Equation 1.

𝑅(𝛼) = 𝑄 (𝛼) +
∑
𝑖

𝛽𝑇𝑖 × 𝑅𝑒𝐿𝑈 (𝑇𝑖 (𝛼)
𝑇𝑖0

− 1) . (1)

where𝑄 (𝛼) indicates the quality (accuracy) of a candidate architec-
ture 𝛼 , and 𝑇𝑖 is a performance (e.g., latency) objective. The ReLU
reward function accepts multidimensional performance objectives
with different weights 𝛽𝑇𝑖 . 𝛽𝑇𝑖 < 0 is a finite negative scalar that
controls how much penalty to give when the candidate’s perfor-
mance deviates from the target𝑇𝑖0. Normalizing by𝑇𝑖0 ensures that
the reward is scale-invariant w.r.t. performance.

The ReLU reward function applies a linear penalty for model
architecture candidates that are above the performance target, but
no penalty for those at or below the performance target. This avoids
unnecessarily penalizing model candidates with comparable quality
but better performance. This is an important design point for NAS
over multiple performance objectives: it helps us optimize both

349

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Li et al.

Relative Training Step time

Q
ua

lit
y

C
ha

ng
es

-0.3%

-0.2%

-0.1%

0.0%

0.1%

0.2%

0.75 1.00 1.25 1.50

ReLU Reward Absolute Reward

(a) ReLU Reward Achieves Better Pareto-
front of Quality and Performance Than Ab-
solute Reward. The better Pareto-front is on
the upper left.

Quality Buckets for Searched Models

R
el

at
iv

e
Tr

ai
ni

ng
 S

te
p

Ti
m

e

0.00

0.50

1.00

1.50

-0.25% -0.20% -0.15% -0.10% -0.05% 0% 0.05%

ReLU Reward Absolute Reward

(b) ReLU Reward Achieves Better Training
Step Time. Results (lower is better) are buck-
etized by quality and then averaged within a
bucket.

Relative Training Step Time Buckets

Q
ua

lit
y

C
ha

ng
es

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.7 0.8 0.9 1.0 1.1 1.2 1.4

ReLU Reward Absolute Reward

(c) ReLU Reward Achieves Better Quality. Re-
sults (higher is better) are bucketized by train-
ing step time and then averaged within a
bucket.

Figure 5: New ReLU Reward Function (ReLU Reward) vs. Baseline Absolute Value Reward Function (Absolute Reward) in NAS
for ProductionDLRMs. Training performance is the primary search objective becauseDLRM is training cost dominated.Model
size is used as the secondary performance objective. System, model, and experiment configurations can be found in Table 2.

training/serving performance (e.g., throughput and latency) and
memory capacity simultaneously for large-scale DLRM models [3].
The more constraints we have, the sparser the search space is—
because there are much fewer candidates that can meet all targets
simultaneously. Therefore, the RL algorithm needs to favor the
overachieving models with the same quality but better performance,
so as to navigate through the sparse search space quickly and
effectively. The closest design to our ReLU reward function is the
absolute value reward function proposed by TuNAS [4]. Equation 2
shows the TuNAS absolute value reward function with multiple
performance objectives

𝑅(𝛼) = 𝑄 (𝛼) +
∑
𝑖

𝛽𝑇𝑖 × |𝑇𝑖 (𝛼)
𝑇𝑖0

− 1|, (2)

where | · | denotes the absolute value function. The difference be-
tween our ReLU reward function and the TuNAS absolute value
reward function is the use of the absolute value function instead of
ReLU in generating individual performance reward signals. Unlike
our ReLU reward function, the TuNAS absolute reward function pe-
nalizes model architecture candidates whose performance is worse
but also those whose performance is better than the target perfor-
mance. Thus, it will miss overachieving models with the same
quality but better performance. While this design difference does
not result in different optimization results when using only one
performance objective, our ReLU reward function achieves much
better results in the presence of multiple performance objectives.

Figure 5 compares our new ReLU reward function with prior
state-of-the-art absolute value reward function in searching for
large scale Pareto-optimized DLRM models3. Our ReLU reward
function delivers a better Pareto-front than the prior art of ab-
solute reward function as shown in Figure 5a. Figure 5b zooms
into the Pareto-fronts by clustering the searched models into qual-
ity buckets and compares the average training step time of the
searched models within each quality bucket, where our ReLU re-
ward function achieves up to 13% better training step time than
the absolute reward function with comparable quality. Similarly,

3The training step latency target is set to vary from 0.75X to 1.5X of training step
latency of the baseline DLRMs, while the memory size (i.e., model size) target to
remains the same as baseline.

Figure 5c demonstrates that the ReLU reward function achieves
up to 0.4% better quality than the absolute reward function, with
comparable training step time. While both the ReLU and absolute
value reward functions meet the neutral serving memory target, the
DLRMs found by using the ReLU reward function have, on average,
1.6% smaller model serving memory size than the models found by
using the absolute reward function.

6.2 Scalable ML-Driven Performance Model
As shown in Equation 1, our multi-objective NAS needs quality and
performance objectives for ML model Pareto-optimization. While
model accuracy is the search objective for quality, performance
objectives are complicated and heterogeneous, including through-
put, latency, and memory capacity for both training and serving on
heterogeneous hardware of TPUs and GPUs. Hardware-agnostic
performance objectives such as FLOPs have been demonstrated
to be a poor performance objective for NAS because of their high
correlation error (>400%) to actual performance [29].

While direct performance measurement on hardware is the best
and most accurate approach for multi-trial NAS [29, 50], it is not
feasible for one-shot NAS. One-shot NAS requires accurate perfor-
mance signals at each search step (with latencies of 10-100 millisec-
onds) to compute the reward (consisting of quality and performance
for the RL controller in time). However, with one-shot NAS, indi-
vidual sub-networks do not exist physically to directly measure
performance on hardware during search. Similarly, while perfor-
mance simulators can be used for multi-trial NAS [20], their cost
and latency makes their use in one-shot NAS infeasible.

An ML-driven approach [7] trains a performance model offline
and uses it in a neural architecture search to provide performance
signals for sampled architecture candidates. However, existing ML-
driven approaches are too expensive to employ for the size of search
space that we are using. For example, for the ML-driven approaches
in [7, 53], even for a search space orders of magnitude smaller
than ours, the performance models require thousands of perfor-
mance measurements from hardware. For our search space sizes
of 𝑂 (10280), millions of performance samples would be needed to
train an adequate model for performance prediction. Moreover, a

350

Hyperscale Hardware Optimized Neural Architecture Search ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

new performance model is needed when the target hardware plat-
form and/or search space change. Unlike the small models running
on mobile devices, our target production-scale models run on hun-
dreds of expensive TPUs/GPUs in parallel, making data gathering
at this scale impractical.

6.2.1 Performance Model Using MLP Neural Networks. In order
to address these challenges, we design a scalable two-stage per-
formance model training methodology including pre-training and
fine-tuning phases. The performance model is an MLP with variable
layers and neurons per layer depending on target ML models to
be optimized. The inputs of the performance model are the model
architecture hyper-parameters as shown in Table 5. The perfor-
mance model is integrated in H2O-NAS: the RL controller injects
the model architecture parameters of the sampled model architec-
ture candidates in each search step as shown in Figure 1. The output
of the performance model are performance metrics (e.g., through-
put and latency) of the target ML model on the target hardware.
The performance model has dual heads, to predict both training
and serving performance for the same target ML model. The per-
formance model also has a analytical objective output to predict
model size. Model size prediction can be calculated directly from
architecture candidates without simulation. While model size is not
usually a primary performance objective by itself, it is an important
objective given constraints of the hardware platforms [3]. The RL
controller in H2O-NAS chooses to use either the training or serving
performance of the target ML model as the primary performance
search objective depending on which one consumes more hardware
resources in deployment, in conjunction with the model size as the
secondary performance objective.

6.2.2 Two-Phase Training of the Performance Model. The MLP-
based performance model is trained in two phases:

Pre-training: For a given search space and target hardware
platforms, our system first samples millions of model architecture
candidates from the search space. It then uses an in-house ML per-
formance simulator (see Section 6.2.3 for more details) to simulate
the performance of the sampled neural architecture candidates. Fi-
nally, using the simulated results as training data, the pre-training
phase trains the MLP-based performance model.

Fine-tuning: While the simulation results (as training data)
have reasonable fidelity, it is critical to ensure that the performance
model generates accurate performance predictions w.r.t. real hard-
ware performance. Thus, in the fine-tuning step, our system sam-
ples 𝑂 (20) candidates from the training data, launches these full-
size ML models on target ML hardware, and collects performance
measurements. The measured performance metric for training is
throughput (i.e., reciprocal of training step time). The measured
performance metric for serving is the serving throughput under
P99 target latency over O(n) serving accelerators. Our system then
uses the 𝑂 (20) real measurements as training data to fine-tune the
performance model.

Table 1 shows the quality and two-stage training details of our
MLP-based performance model. This performance model achieves
very high quality w.r.t. the real hardware performance with 1% ∼ 3%
normalized root-mean-square error (NRMSE). The pre-training
stage learns the non-convex performance behavior, and the fine-
tuning stage effectively reduces the final NRMSE by 10X as shown

Table 1: Quality and Two-stage Training Details of a 2-layer
MLP Performance Model with 512 Neurons Per Layer. The
model predicts DLRM training performance, as training per-
formance prediction is the most challenging because of the
hardware system scale and model sizes. System, model, and
experiment configurations are in Table 2.

Search Space Size 𝑂 (10282)
Number of Pretraining Samples 1 𝑀𝑖𝑙𝑙𝑖𝑜𝑛

NRMSE of Pretrained Models on the Pretraining
Samples

0.31% ∼ 0.47%

Number of Finetuning Samples 20
NRMSE of Pretrained Models on Production Mea-
surements

14.7% ∼ 42.9%

NRMSE of Finetuned Models on Production Mea-
surements

1.05% ∼ 3.08%

in Table 1. The scalable two-stage training methodology makes
the best use of simulations and measurements on real hardware to
achieve high accuracy and low cost simultaneously for real-time
performance prediction in our one-shot NAS. Table 1 also highlights
the importance of using both phases. We have 14%-47% average
relative error with the pre-trained model, versus a final 1-3% after
fine-tuning. Reusing a single pre-trained model for all domains also
leads to significant accuracy loss. It might be possible to construct
a larger, universal model for all domains, and then fine-tune for
each domain. This single pre-trained model approach is beyond the
scope of this paper, and we leave it to future work.

6.2.3 Performance Simulator Details. The ML performance simula-
tor used in generating the training data is an in-house simulator. It
takes a set of inputs including: 1) hardware configurations to spec-
ify the target ML hardware architecture, 2) a TensorFlow graph [1]
or a high level operation (HLO) graph [46] of the target ML model,
3) runtime statistics for the target ML model such as loop/branch
counts and embedding table access counts, and 4) model archi-
tecture configurations such as the embedding layout that are not
present in the model TensorFlow/HLO graph.

The ML performance simulator models hardware architecture in
detail for tensor/matrix units, vector units, and memory (including
on-chip memory) and network subsystems. The simulator does not
model host CPUs, assuming that ML models run on accelerators
completely. When the TensorFlow-graph is used as input, The sim-
ulator simulates compiler optimizations such as op/layer fusion,
memory management including on-chip memory management, and
model sharding and partitioning. Since HLO graphs usually contain
sufficient compiler optimization annotations, the simulator need
not simulate compiler optimizations when using HLO as the input.
With the aforementioned inputs, the simulator walks through a
TensorFlow/HLO graph, simulates run-time of each operator, and
finally sums the total run-time on the critical path as the execution
time of the target ML model on the target ML accelerator.

351

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Li et al.

Table 2: Model Characteristics and Hardware Configurations for
the Three Key Domains. Baseline CoAtNet and EfficientNet-X are
model families and show a range of parameter counts (Params) and
FLOPs.

VIT DLRM CNN

Baseline CoAtNet [51] Internal EfficientNet-X [29]
Params (Million) 25∼688 O(1000) 7.6∼199
FLOPs (Billion) 8.4∼1060 O(100) 1.8∼186
Training HW 128 TPUv4 128 TPUv4 128 TPUv4
Serving HW 1 TPUv4i 1 TPUv4i 1 TPUv4i
DominantCost Training Training Training

7 DEPLOYMENT AT GOOGLE SCALE WITH
HIGH EFFICIENCY

In this section, we first show the Pareto-optimization results from
H2O-NAS on large-scale ML models in important ML domains, in-
cluding vision transformers (VITs), deep learning recommendation
models (DLRMs), and convolution neural networks (CNNs). We
then present the results from H2O-NAS deployment on large-scale
live ML production at Google.

7.1 H2O-NAS Pareto-Optimization for SoTA
Models

Table 2 shows the model and hardware information for the three
focus domains of VIT, DLRM, and CNN. All models are trained
on 128 TPUv4 [11] chips and served on a single TPUv4i chip [24].
During model Pareto-optimization, H2O-NAS always targets better
performance, with neural or better quality. Moreover, because all
models are training cost dominated as shown in Table 2, H2O-NAS
targets to optimize training performance, with neural or better serv-
ing performance (serving throughput under p99 target latency) and
model size. Table 2 also lists the baseline state-of-the-art models for
each domain. CoAtNeT [13] and EfficientNet-X [29] model families
were designed by previous NAS efforts, making them very strong
baselines. The internal business-critical DLRM model has also been
continuously and heavily optimized.

7.1.1 Pareto-Optimization for VIT. When searching for better vi-
sion transformer (VIT) models, we use CoAtNet [13] as the baseline
and the ViT search space as shown in table 5. Figure 6 shows the
results of the H2O-NAS designed CoAtNet-H model family, on the
target training platform of TPUv4 [11]. Compared with the baseline
CoAtNet model family, the CoAtNet-H model family improves the
Pareto-front, with 1.54X better training throughput and neutral
quality and serving performance. Baseline CoAtNet is a hybrid
network with both convolution and transformer sections. To opti-
mize quality and performance, H2O-NAS increases model depth,
while decreasing image resolution for the convolution section and
replacing ReLU with Squared ReLU as the activation function in
the transformer section. Trading off image resolution for model
depth makes the model friendlier to TPUs, while other changes
of the network increase the models’ capacity and non-linearity
to increase quality. The ablation study in Table 3 shows how the
quality and performance changes with each change on the model

Training throughput on TPUv4 (img/sec)

To
p-

1
A

cc
ur

ac
y

80%

90%

0 1000 2000 3000

CoAtNet-SD

CoAtNet-H-SD

CoAtNet-MD

CoAtNet-H-MD

CoAtNet-LD

CoAtNet-H-LD

Figure 6: Pareto-front Results on Accuracy and Training
Performance of the H2O-NAS Designed CoAtNet-H and the
Baseline CoAtNet, at Varying Dataset Sizes (Small, Medium,
and Large). Both model families pretrain on ImageNet1K
(SD), ImageNet21K (MD), and JFT-300M (LD), while evaluat-
ing on ImageNet1K. C-H-# and H-# denote different models
in the CoAtNet-H family and the baseline CoAtNet family,
at varying model sizes. The better Pareto-front direction is
towards the upper right, representing faster and more accu-
rate models

Table 3: Breakdowns of Model Architecture Change Impact
to Training Throughput and Accuracy of the H2O-NAS De-
signed CoAtNet-H Over the Baseline CoATNet. The deeper
convolution change is an increase from 12 to 16 layers of
the convolution part of the model, and the resolution pre-
training shrink is from 224 to 160 pixels. †Top-1 accuracy
is on Imagenet. §The training throughput is images/sec per
chip, with per chip batch size of 64 on TPUv4.

Model Top-1† #Param FLOPs Training§

Accuracy (Million) (Billion) Throughput

CoAtNet-5 [51] 89.7% 688 1012 101
+DeeperConv 90.3% 697 1060 97
+ResShrink 88.9% 697 474 186
+SquaredReLU 89.7% 697 476 186(CoAtNet-H5)

architecture, quantitatively. Further details on the model architec-
tures of the CoAtNet-H family can be found in its opensource code
repository [40]

Detailed hardware analysis on CoAtNet-5 and CoAtNet-H5 (the
largest in the respective families) in Figure 7 further reveals the
reason behind the performance gains with neutral quality. Both
CoAtNet-H5 and CoAtNet-5 have high operational intensity and
are compute bound. While remaining compute-bound, CoAtNet-H5
is designed by H2O-NAS to re-balance the load on compute and
memory to maximize parallelism and reduce bottlenecks on TPUv4.
As shown in Figure 7, the compute rate (FLOPS, i.e., FLOPs/s) of
CoAtNet-H5 drops by 14%. To compensate for the drop in the com-
pute rate, CoAtNet-H5 reduces total compute load (FLOPs) by 53%,
which, together with the more hardware-friendly model architec-
ture changes, leads to an 1.84X speedup despite the compute rate

352

Hyperscale Hardware Optimized Neural Architecture Search ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Performance(Images/s)

FLOPs (Billion/Image)

TFLOPS (TFLOPs/s)

Operational Intensity
(FLOPs/Byte)

VMEM BW (TB/s)

CMEM BW(GB/s)

HBM BW(GB/s)

HBM+CMEM BW (GB/s)

0 2 4 6

C5 C-H5

Figure 7: Training PerformanceAnalysis for CoAtNet-H5 (C-
H5) and Baseline CoAtNet-5 (C5) on TPUv4. C-H5 stats are
normalized to those of C5, with raw numbers included in
the parentheses after the ratios.

Normalized Training Step Time

Original
DLRM

Optimized
DLRM-H

0.00 0.25 0.50 0.75

Embedding Computing MLP Computing

Step Time
Reduction

Figure 8: Training Step Time of H2O-NAS designed DLRM-
H, normalized to the original DLRM. The training step time
is MAX(Embedding computing time, DNN computing time).
The optimized DLRM-H has a quality gain of 0.02%.

drop. Total memory bandwidth increases by 20%, compensating for
potential quality loss from the the compute load (FLOPs) drop.

The CoATNet model family is a state-of-the-art VIT model fam-
ily, including advanced transformer in its model architectures. The
VIT model family in our study and transformer-based NLP mod-
els have similar transformer architectures and search space with
weight-sharing designs. Thus, the strong performance gains from
the H2O-NAS Pareto-optimizations on CoAtNet provide confidence
in the effectiveness of the Pareto-optimizations of H2O-NAS on
transformer-based NLP models as well.

7.1.2 Pareto-Optimization for DLRM. When searching for better
DLRM models, we use an internal production DLRM model and
the DLRM search space as shown in Table 5. Figure 8 shows the
performance of the H2O-NAS designed DLRM-H, in comparison
with the baseline DLRM. Although the performance gains over
baseline DLRM are smaller than that for CoATNet, it is important
to note that the baseline (business-critical) DLRM model is exten-
sively optimized, making it a very competitive comparison. The
10% performance gain from H2O-NAS within days is equivalent to
improvements historically achieved by a team of 10+ experts over
months.

Table 4: Geometric Mean Speedup of H2O-NAS designed
EfficientNet-H family over the baseline Efficientnet-X fam-
ily. Geometric Mean Speedup of B5 ∼ B7 models is also re-
ported in the parentheses, as each model family has 8 mod-
els (B0 ∼ B7) with B0 ∼ B4 models of EfficientNet-H being
the same as those of the baseline.

Training Speedup Serving Speedup Serving Speedup
on TPUv4 on TPUv4i on GPUv100

5% (14%) 6% (16%) 6% (17%)

Moreover, despite having been optimized heavily by many prior
efforts including generic NAS, the original DLRM still has signifi-
cant load-imbalance between embedding processing and MLP pro-
cessing, as the MLP compute time is much longer than the em-
bedding computing time. This load imbalance not only causes sub-
optimal performance as shown in Figure 8 but also skews the model
towards generalization without sufficient memorization, which in
turn hurts quality. However, this trade-off among embedding, MLP,
quality, and performance is very hard for humans to optimize but
can effectively be handled by H2O-NAS. Concretely, H2O-NAS en-
ables the previously impossible end-to-end Pareto-optimizations
on quality and performance over both embedding layers and MLP
layers, which balances embedding compute for memorization and
MLP compute for generalization. The end-to-end automated opti-
mization and load-balancing reduce the total embedding layer size
and increase the total MLP layer size, improving DLRM end-to-end
performance by 10+% with 0.02% better quality and neutral serving
performance and memory.

7.1.3 Pareto-Optimization for CNN. When searching models over
the baseline of EfficientNet-X, we use the convolutional search
space as shown in table 5 in Appendix A. Table 4 demonstrates the
performance improvements of the H2O-NAS designed EfficientNet-
H model family over the baseline EfficientNet-X [29] family. The
performance improvements over EfficientNet-X are smaller than
those of CoAtNet-H, because the baseline EfficientNet-X family
has already been heavily optimized including through previous
NAS [29] efforts and is much smaller in model size and total FLOPs
as demonstrated in Table 2. As a result, the EfficientNet-X family is
already very close to its Pareto-front in its search space.

Nonetheless, H2O-NAS can further Pareto-optimize the rela-
tively bigger models (B5 ∼ B7) in the family to achieve about 6%
family-wide average performance gains and about 15% average
speedup for B5 ∼ B7 on both training (on TPUv4 [11]) and serv-
ing (on TPUv4i [24] and GPUv100 [9]), with neutral quality. The
smaller models in the family (B0 ∼ B4) do not exhibit any changes
and thus do not lead to performance gains over the baseline. Unlike
the VIT/CoAtNet [13] and DLRM models which have different set-
tings between training and serving, the CNN EfficientNet-X [51]
model family has the same settings between training and serving,
making its training and serving performance well correlated. The
performance gains of EfficientNet-H come from the changes on the
expansion factors R inside the dynamic fused MBConv (as shown
in Figure 4) of models B5-B7 from uniformly 6 to a mixture of 4 and

353

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Li et al.
R

el
at

iv
e

Pe
rf

or
m

an
ce

R
el

at
iv

e
Po

w
er

, E
ne

rg
y

0.0

0.5

1.0

1.5

2.0

0.25

0.50

0.75

1.00

1.25

CNet CNet-H DLRM DLRM-H ENet-X ENet-H

Performance Power Energy

Figure 9: Performance, power and energy of H2O-NAS de-
signed EfficientNet-H (ENeT-H), CoAtNet-H (CNet-H), and
DLRM-H. Results are normalized to respective baselines. Re-
sults are geometric mean for model families.

6. Further details on the model architectures of the EfficientNet-H
family can be found in its opensource code repository [41].

7.2 Energy Benefits of H2O-NAS
To study energy implications of H2O-NAS on designing newmodels,
we measure the power consumption in (𝑊𝑎𝑡𝑡𝑠) for target accelera-
tors running these ML models. We then compute 𝐸𝑛𝑒𝑟𝑔𝑦 (𝐽𝑜𝑢𝑙𝑒𝑠) =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠)×𝑃𝑜𝑤𝑒𝑟 (𝑊𝑎𝑡𝑡𝑠). Figure 9 shows the power
and energy results of H2O-NAS designed models. All of the H2O-
NAS designed models have significant energy savings. Contrary
to the general intuition that faster models require more power, the
fast models of CoAtNet-H and DLRM-H consume much less power
than their slower baselines. For example, the CoAtNet-H family
is 1.54X faster in training, but still consumes 15% less power (and
thus 46% less energy) than the baseline CoAtNet family. DLRM-H
is 10% faster in training, but consumes 7% less power (and thus 15%
less energy) than DLRM.

Detailed hardware level analysis shown in Figure 7 reveals the
reason for the power efficiency gain. The 14% drop on compute rate
(FLOPS, i.e., FLOPs/s) of CoAtNet-H5 improves model power effi-
ciency significantly. Although total memory bandwidth increases
by 20% to compensate for potential quality loss from the the com-
pute load (FLOPs) drop, most of the memory bandwidth increase is
inside the 128MB on-chip memory (CMEM) of the TPUv4 [11] as
evidenced by the 5.3X bandwidth increase for CMEM. As a result,
the total offchip traffic to HBM is actually reduced by 35%. Since
the on-chip CMEM is much more power-efficient than the off-chip
HBM, the increased total memory bandwidth does not cause a
corresponding power increase.

Similar reasons lead to the power consumption improvement
for DLRM-H. However, EfficientNet-H consumes similar power
as the baseline, because both model families are mostly memory-
bound, which makes the TPUv4 hardware run at low utilization
with system power dominated by idle power. Thus, EfficientNet-H’s
better energy consumption is due to its better performance than
the baseline.

These counter-intuitive results not only highlight the benefits
of H2O-NAS’s capability to change ML model architectures for op-
timizations but also shed light on important ML optimization prin-
ciples. Many believe that, to achieve high training/serving speed,
ML models need to achieve the highest operational intensity pos-
sible and stay closest to the hardware peak performance. But this

Q
ua

lit
y

G
ai

n

R
el

at
iv

e
P

er
fo

rm
an

ce

0.0%

1.0%

2.0%

3.0%

0.0

0.5

1.0

1.5

2.0

CV
1

CV
2

CV
3

CV
4

CV
5

AV
G

DL
RM
1

DL
RM
2

DL
RM
3
AV
G

Quality Performance

Figure 10: Quality and Performance Gains of H2O-NAS de-
signed Datacenter-scale Production-grade ML Models. CV#
and DLRM# refer to different production scale computer vi-
sion and DLRM models. Performance gains are normalized
by the baseline production scalemodels, while quality gains
are the raw improvements as quality itself is measured by
percentage.

is unnecessary, as long as the models have reasonable operational
intensity and stay compute-bound. Redesigning the model architec-
tures to re-balance compute and memory processing according to
the underlying hardware resources is more effective at improving
performance and even power efficiency. Such architectural opti-
mizations are very hard for humans, but H2O-NAS can effectively
capture the interaction between model and hardware architectures
to achieve optimal performance and quality.

7.3 H2O-NAS in Production at Scale
H2O-NAS in production aims at zero-touch Pareto-optimizations on
quality, performance, and energy efficiency for many production-
grade ML models in diverse domains. We apply H2O-NAS to accom-
plish this goal. Figure 10 shows results of H2O-NAS for production-
grade computer vision (CV) models and DLRM. Quality is always
the first priority during the optimizations, which is the reason that
all the optimized production models have neutral or better quality.
In some cases, to achieve quality gains, H2O-NAS designs the mod-
els to allow a reasonable performance degradation (e.g., CV5 and
DLRM3 in Figure 10). All production-grade ML models use training
performance as the primary performance objective, with model
size and serving performance as the secondary objectives. Overall,
for computer vision production scale models, H2O-NAS improves
performance by 1.29X and model quality by 2.83%. For DLRM mod-
els, H2O-NAS improves training performance by 1.22X and model
quality by 0.12% on average. All models achieve neutral or better
secondary performance objectives. Products using these models
have benefited significantly from the seemingly small quality gains.
These higher performance models also bring significant energy
savings (similar to Figure 9), with 15% and 27% energy savings at
datacenter-scale from the optimized CV models and DLRM models,
respectively.

354

Hyperscale Hardware Optimized Neural Architecture Search ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

H2O-NAS at scale in production is efficient: Because the training
data for the performance model is primarily from simulations, the
machine hours for performance model building are mostly on CPUs
and negligible in cost compared to training the target model. Then,
when performing architecture search, the search cost is ∼1.5X that
of regular model training. After a candidate architecture has been
identified, it has to be retrained without the one-shot model over-
head, making the total cost of H2O-NAS about ∼2.5X of a vanilla
model training. However, H2O-NAS runs only once, exploring a
space of 𝑂 (2280) model architectures, using orders of magnitude
less compute and human effort than achieving the same results
manually (if such human optimizations were feasible at all). More-
over, large scale downstream serving and continued research (e.g.,
training for feature research on DLRMs) benefits from the H2O-
NAS designed models. The total accelerator machine hours used on
H2O-NAS is < 0.03% of the total accelerator machine hours used
for downstream serving or research training jobs.

8 RELATEDWORK
Datacenter accelerators, including TPUs [11, 14, 24, 25, 36] and
GPUs [9, 37, 38], have been fueling the rapid growth in ML by
providing unprecedented computing power for both training and
inference at scale. Powered by these accelerators, state-of-the-art
ML models have grown ever larger. For example, computer vision
models [57], language models [2, 5, 10, 18, 28], and deep learning
recommendation models (DLRMs)[35] have hundreds of billions to
tens of trillions of parameters and require up to 2000+ Zettaflops
for training. These powerful models and hardware provide both
challenges and opportunities for NAS.

Neural Architecture Search (NAS) aims to improve machine
learning models with reinforcement learning [59, 60], evolution-
ary search [44], differentiable search [16, 31], and other meth-
ods [26, 33]. In addition to the popular convolutional models, NAS
has also been used in searching for transformer [8] and vision
transformer [53] models and DLRMs [27]. Recent work on effi-
cient NAS [6, 56] have also explored the opportunity to directly
use weights learned during the search without retraining, espe-
cially for mobile models. Neural architecture search for low-level
primitives [48] has also shown its success in finding alternative
architectures, but combining the search for high level model archi-
tectures and low level primitives remains a challenge for NAS.

Recent work in NAS has also used multi-objective search [6,
7, 15, 17, 19, 22, 23, 29, 30, 32, 34, 50, 51, 53, 55, 58] to optimize
accuracy and performance. These multi-objective hardware-aware
NAS optimizers use FLOPs [51], performance measured on target
hardware [29, 50], or predictions from performancemodels [4, 7, 53]
as a search objective for performance. However, prior work has not
studied use of multiple performance objectives.

9 CONCLUSIONS
We presented the first hyperscale hardware optimized neural archi-
tecture search (H2O-NAS) at scale, demonstrating an impressive
zero-touch capability for Pareto-optimizations. We have shown
significantly improved performance, quality, and energy efficiency
for both state-of-the-art research models and live production ML

models at Google, with seamless integration with datacenter-scale
production deployments.

As hardware architects continue to innovate around new acceler-
ators, they face a challenge in forecasting the models that will run
on such future machine: Hardware designs must often be commit-
ted years before models will run on the machine! H2O-NAS enables
late binding of model architectures to hardware architectures. This
empowers architects to focus more on optimizing hardware for
peak performance, silicon area, and power constraints, while H2O-
NAS can later optimizes future model to run on the hardware. As a
result, H2O-NAS can significantly enhance the value we can derive
from hardware over its lifetime. We believe that it will be a key
tool in the computer architect’s arsenal as we continue to codesign
across hardware and software for more innovation to accelerate
machine learning.

ACKNOWLEDGMENTS
We would like to acknowledge the Brain, Visual Semantic Search,
Ads, Platforms, and ML system co-design & optimization teams for
making H2O-NAS a reality. We would like to acknowledge Amin
Vahdat, Carrie Grimes Bostock, Danner Stodolsky, David Patterson,
Jeff Dean, and Robert Hundt as well as the anonymous reviewers
for their valuable feedback.

A SEARCH SPACE DETAILS FOR VIT AND
CNN

Table 5 shows the hardware-optimized search spaces for DLRM
(Section 5.1), CNN, and VIT. Our transformer search space and
weight-sharing super-network is similar to [8, 53], with augmen-
tation on performance-aware transformer layers such as funnel
transformer [12]. Our transformer search space can be used isola-
tion to search for pure VIT or transformer based NLP models. The
CNN search space is similar to recent factorized search spaces [7, 29,
50, 51]. By combining both CNN and transformer search space, our
search space supports search for hybrid vision transformer models
with both convolution and transformer layers. The search dimen-
sions in the search spaces are designed to be hardware-friendly.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel,
Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a Human-like Open-Domain Chatbot. CoRR
abs/2001.09977 (2020). arXiv:2001.09977 https://arxiv.org/abs/2001.09977

[3] Ehsan K. Ardestani, Changkyu Kim, Seung Jae Lee, Luoshang Pan, Valmiki Ram-
persad, Jens Axboe, Banit Agrawal, Fuxun Yu, Ansha Yu, Trung Le, Hector Yuen,
Shishir Juluri, Akshat Nanda, Manoj Wodekar, Dheevatsa Mudigere, Krishnaku-
mar Nair, Maxim Naumov, Chris Peterson, Mikhail Smelyanskiy, and Vijay Rao.
2022. Supporting Massive DLRM Inference Through Software Defined Memory.
In Proceedings of the IEEE International Conference on Distributed Computing
Systems. IEEE, 302–312. https://doi.org/10.1109/ICDCS54860.2022.00037

[4] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan
Kindermans, and Quoc Le. 2020. Can Weight Sharing Outperform Random

355

https://www.tensorflow.org/
https://arxiv.org/abs/2001.09977
https://arxiv.org/abs/2001.09977
https://doi.org/10.1109/ICDCS54860.2022.00037

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Li et al.

Table 5: Search space for H2O-NAS. 2,3,4X,Y, 𝑎𝑛𝑑Z are model dependent variables. 1,3SE ratio or embedding table width of zero
means removing the corresponding SE layer or embedding table, respectively.

Convolutional Models Searchable Dimensions

Block Choices

Block types: MBConv, Fused MBConv,
Kernel size: 3×3, 5×5, 7×7

Stride: 1, 2, 4 (Stride-2/4 are only allowed in the first layer of a stage, if chosen.)
Expansion Ratio (for MBConv and FusedMBConv): 1, 3, 4, 6

Activation function: ReLU, swish

Tensor reshaping Space-to-depth with or without stride-N Conv2D_N×N
Space to batch with or without memory-copy-reshape ops

Squeeze & Excite Ratio 01, 1.0, 0.5, 0.25. 0.125
Skip connections none, identity with pool and/or Conv2D-1x1 when feature map tensors mismatch

Block depth (# of Layers) -3, -2, -1, 0, +1, +2, +3 w.r.t. baseline depth
Block Width (Output Filters) [−5, +5] × X2, 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑧𝑒𝑟𝑜 w.r.t. baseline width

Initial Resolution 224 × 224 ∼ 600 × 600, with total 8 choices
Search Space Size (7 blocks): (302400)7 ∗ 8 ≈ 𝑂 (1039)

DLRMModels Searchable Dimensions

Embedding Width: [−3, +3] × Y3, w.r.t baseline w/ a minimal increment of 8
Vocabulary size: 50%, 75%, 100%, 125%, 150%, 175%, 200% of baseline

DNN
Width: [−5, +5]Z4, 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑧𝑒𝑟𝑜 w.r.t baseline w/ a minimal increment of 8

Low rank: 1
10 ,

2
10 , ..., 1 of layer width w/ a minimal increment of 8

Depth (# of layers): -3, -2, -1, 0, +1, +2, +3 w.r.t. baseline depth
Search Space Size: 7𝑂 (300) ∗ (7 × 10 × 10)𝑂 (10) ≈ 𝑂 (10282)

Vision Transformer Models Searchable Dimensions

Self-Attention Hidden Size: Multiples of 64 up to 1024
Low rank: 1

10 ,
2
10 , ..., 1 of layer width w/ a minimal increment of 8

Activation function ReLU, swish, GeLU, Square ReLU
Sequence pooling layers w/ or w/o pooling to reduce sequence length after each block

Primer transformer options w/ or w/o channel-wise depth convolutions after projection in self-attention
of Layers per TFM block -3, -2, -1, 0, +1, +2, +3 w.r.t. baseline depth

Transformer Search Space Size: (17920)2 ≈ 𝑂 (108) (2 multi-layer TFM Blocks)

Conv Stem

Convolutional stem: Search with conv search space
Patch Size: 4×4, 7×7, 8×8, 14×14, 16×16, 28×28, 32×32

Initial Resolution: 112 × 112 448 × 448, with total 21 choices
Hybrid ViT Search Space Size: 179202 ∗ 21 ∗ 3024002 ∗ 7 ≈ 𝑂 (1021) with 2 TFM and 2 Convolution blocks

Architecture Search?An Investigationwith TuNAS. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14323–14332. https:
//doi.org/10.1109/CVPR42600.2020.01433

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems, Vol. 33. 1877–1901. https:
//dl.acm.org/doi/abs/10.5555/3495724.3495883

[6] Han Cai, Chuang Gan, and Song Han. 2020. Once for All: Train One Network
and Specialize it for Efficient Deployment. In Proceedings of the International
Conference on Learning Representations. https://doi.org/10.48550/arXiv.1908.
09791

[7] Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neural Architec-
ture Search on Target Task and Hardware. In Proceedings of the International Con-
ference on Learning Representations. https://doi.org/10.48550/arXiv.1812.00332

[8] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. 2021. AutoFormer:
Searching Transformers for Visual Recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. https://doi.org/10.48550/
arXiv.2107.00651

[9] Jack Choquette, Olivier Giroux, and Denis Foley. 2018. Volta: Performance and
Programmability. In IEEE Micro. https://doi.org/10.1109/MM.2018.022071134

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, HenrykMichalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling
with Pathways. https://doi.org/10.48550/ARXIV.2204.02311

[11] Google Cloud. 2022. System Architecture: TPU v4. https://cloud.google.com/tpu/
docs/system-architecture-tpu-vm#tpu_v4.

356

https://doi.org/10.1109/CVPR42600.2020.01433
https://doi.org/10.1109/CVPR42600.2020.01433
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://doi.org/10.48550/arXiv.1908.09791
https://doi.org/10.48550/arXiv.1908.09791
https://doi.org/10.48550/arXiv.1812.00332
https://doi.org/10.48550/arXiv.2107.00651
https://doi.org/10.48550/arXiv.2107.00651
https://doi.org/10.1109/MM.2018.022071134
https://doi.org/10.48550/ARXIV.2204.02311
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm##tpu_v4
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm##tpu_v4

Hyperscale Hardware Optimized Neural Architecture Search ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[12] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V. Le. 2021. Funnel-Transformer:
Filtering out Sequential Redundancy for Efficient Language Processing. In Ad-
vances in Neural Information Processing Systems, Vol. 34. 6010–6022. https:
//dl.acm.org/doi/10.5555/3495724.3496083

[13] ZihangDai, Hanxiao Liu, Quoc V. Le, andMingxing Tan. 2021. CoAtNet: Marrying
Convolution and Attention for All Data Sizes. In Advances in Neural Information
Processing Systems, Vol. 34. 3965–3977. https://doi.org/10.48550/arXiv.2106.04803

[14] Jeffrey Dean. 2019. The Deep Learning Revolution and Its Implications for
Computer Architecture and Chip Design. arXiv:1911.05289 [cs.LG] https:
//doi.org/10.48550/arXiv.1911.05289

[15] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. 2018.
Ppp-net: Platform-aware progressive search for pareto-optimal neural architec-
tures. In Proceedings of the European Conference on Computer Vision. 517–531.

[16] Xuanyi Dong and Yi Yang. 2019. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1761–1770. https://doi.org/10.1109/CVPR.2019.00186

[17] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Efficient multi-
objective neural architecture search via lamarckian evolution. In Proceedings
of the International Conference on Learning Representations. https://doi.org/10.
48550/arXiv.1804.09081

[18] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Transformers: Scal-
ing to Trillion ParameterModels with Simple and Efficient Sparsity. In Proceedings
of Machine Learning Research. https://doi.org/10.48550/arXiv.2101.03961

[19] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,
and Jian Sun. 2020. Single path one-shot neural architecture search with uniform
sampling. In Proceedings of the European Conference on Computer Vision. Springer,
544–560. https://doi.org/10.1007/978-3-030-58517-4_32

[20] Suyog Gupta and Berkin Akin. 2020. Accelerator-aware Neural Network Design
using AutoML. In On-device Intelligence Workshop, in conjunction with the 3rd
SysML Conference. https://doi.org/10.48550/arXiv.2003.02838

[21] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,
B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong,
and X. Wang. 2018. Applied Machine Learning at Facebook: A Datacenter Infras-
tructure Perspective. In Proceedings of the IEEE Symposium on High-Performance
Computer Architecture. 620–629. https://doi.org/10.1109/HPCA.2018.00059

[22] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.
Le, and Hartwig Adam. 2019. Searching for MobileNetV3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. https://doi.org/10.1109/
ICCV.2019.00140

[23] Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-Yu Pan, Yu-Ting Chen, Wei
Wei, and Shih-Chieh Chang. 2018. MONAS: Multi-Objective Neural Architecture
Search using Reinforcement Learning. arXiv preprint arXiv:1806.10332 (2018).
https://doi.org/10.48550/arXiv.1806.10332

[24] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B.
Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas
Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David
Patterson. 2021. Ten Lessons From Three Generations Shaped Google’s TPUv4i :
Industrial Product. In Proceedings of the IEEE/ACM International Symposium on
Computer Architecture. 1–14. https://doi.org/10.1109/ISCA52012.2021.00010

[25] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, Richard C. Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
GordonMacKean, AdrianaMaggiore, MaireMahony, KieranMiller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. In
Proceedings of the IEEE/ACM International Symposium on Computer Architecture.
https://doi.org/10.1145/3079856.3080246

[26] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos,
and Eric Xing. 2018. Neural architecture search with bayesian optimisation and
optimal transport. In Advances in Neural Information Processing Systems, Vol. 31.
https://doi.org/10.48550/arXiv.1802.07191

[27] Ravi Krishna, Aravind Kalaiah, BichenWu, Maxim Naumov, Dheevatsa Mudigere,
Misha Smelyanskiy, and Kurt Keutzer. 2021. Differentiable NAS Framework and
Application to Ads CTR Prediction. CoRR abs/2110.14812 (2021). arXiv:2110.14812
https://arxiv.org/abs/2110.14812

[28] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2021. GShard:
Scaling Giant Models with Conditional Computation and Automatic Sharding.

In Proceedings of the International Conference on Learning Representations. https:
//doi.org/10.48550/arXiv.2006.16668

[29] Sheng Li, Mingxing Tan, Ruoming Pang, Andrew Li, Liqun Cheng, Quoc V. Le,
and Norman P. Jouppi. 2021. Searching for Fast Model Families on Datacenter
Accelerators. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 8085–8095. https://doi.org/10.48550/arXiv.2102.05610

[30] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. 2019. Partial order pruning:
for best speed/accuracy trade-off in neural architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9145–9153.
https://doi.org/10.48550/arXiv.1903.03777

[31] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable
Architecture Search. In Proceedings of the International Conference on Learning
Representations. https://doi.org/10.48550/arXiv.1806.09055

[32] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb,
Erik Goodman, and Wolfgang Banzhaf. 2019. Nsga-net: neural architecture
search using multi-objective genetic algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference. 419–427. https://doi.org/10.1145/3321707.
3321729

[33] Renqian Luo, Fei Tian, Tao Qin, and Tie-Yan Liu. 2018. Neural architecture
optimization. In Advances in Neural Information Processing Systems, Vol. 31. https:
//doi.org/10.48550/arXiv.1808.07233

[34] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. 2020.
Fast Hardware-Aware Neural Architecture Search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern RecognitionWorkshops. 692–693. https:
//doi.org/10.48550/arXiv.1910.11609

[35] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Andrew Tulloch, Srinivas Srid-
haran, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo, Jie Amy
Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang, Ehsan K.
Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yil-
maz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie Wen,
Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna Dhuli-
pala, K. R. Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi Gangidi,
Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,
Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr Lapukhov,
Maxim Naumov, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao. 2022.
High-performance, Distributed Training of Large-scale Deep Learning Recom-
mendation Models. In Proceedings of the IEEE/ACM International Symposium on
Computer Architecture. 993–1011. https://doi.org/10.48550/arXiv.2104.05158

[36] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James
Laudon, Cliff Young, and David Patterson. 2020. A Domain-Specific Supercom-
puter for Training Deep Neural Networks. In Communications of the ACM, Vol. 67.
67–78. https://doi.org/10.1145/3360307

[37] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture. White Paper (2020).
[38] NVIDIA. 2022. NVIDIA H100 Tensor Core GPU Architecture. White Paper (2022).
[39] OpenAI. 2018. AI and Compute. https://openai.com/blog/ai-and-compute/.
[40] Opensource. 2023. CoAtNet-H. https://github.com/tensorflow/tpu/tree/master/

models/official/coatnet/tpu.
[41] Opensource. 2023. EfficientNet-H. https://github.com/tensorflow/tpu/tree/

master/models/official/efficientnet/tpu.
[42] David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang, Lluis-Miquel

Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean. 2021. Carbon
Emissions and Large Neural Network Training. CoRR abs/2104.10350 (2021).
arXiv:2104.10350 https://arxiv.org/abs/2104.10350

[43] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollár. 2020. Designing network design spaces. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10428–10436. https://doi.
org/10.1109/CVPR42600.2020.01044

[44] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v33i01.33014780

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. In International Journal
of Computer Vision, Vol. 115. Springer, 211–252. https://dl.acm.org/doi/10.1007/
s11263-015-0816-y

[46] Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Performance.
[47] Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana

Ramabhadran. 2013. Low-rank matrix factorization for Deep Neural Network
training with high-dimensional output targets. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing. 6655–6659.
https://doi.org/10.1109/ICASSP.2013.6638949

[48] David R. So, Wojciech Manke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and
Quoc V. Le. 2021. Primer: Searching for Efficient Transformers for Language
Modeling. In Advances in Neural Information Processing Systems, Vol. 34. 6010–
6022. https://doi.org/10.48550/arXiv.2109.08668

[49] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi
Priyantha, Jie Liu, and Diana Marculescu. [n. d.]. Single-Path NAS: Device-Aware
Efficient ConvNet Design. In Joint Workshop on On-Device Machine Learning

357

https://dl.acm.org/doi/10.5555/3495724.3496083
https://dl.acm.org/doi/10.5555/3495724.3496083
https://doi.org/10.48550/arXiv.2106.04803
https://arxiv.org/abs/1911.05289
https://doi.org/10.48550/arXiv.1911.05289
https://doi.org/10.48550/arXiv.1911.05289
https://doi.org/10.1109/CVPR.2019.00186
https://doi.org/10.48550/arXiv.1804.09081
https://doi.org/10.48550/arXiv.1804.09081
https://doi.org/10.48550/arXiv.2101.03961
https://doi.org/10.1007/978-3-030-58517-4_32
https://doi.org/10.48550/arXiv.2003.02838
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.48550/arXiv.1806.10332
https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.48550/arXiv.1802.07191
https://arxiv.org/abs/2110.14812
https://arxiv.org/abs/2110.14812
https://doi.org/10.48550/arXiv.2006.16668
https://doi.org/10.48550/arXiv.2006.16668
https://doi.org/10.48550/arXiv.2102.05610
https://doi.org/10.48550/arXiv.1903.03777
https://doi.org/10.48550/arXiv.1806.09055
https://doi.org/10.1145/3321707.3321729
https://doi.org/10.1145/3321707.3321729
https://doi.org/10.48550/arXiv.1808.07233
https://doi.org/10.48550/arXiv.1808.07233
https://doi.org/10.48550/arXiv.1910.11609
https://doi.org/10.48550/arXiv.1910.11609
https://doi.org/10.48550/arXiv.2104.05158
https://doi.org/10.1145/3360307
https://openai.com/blog/ai-and-compute/
https://github.com/tensorflow/tpu/tree/master/models/official/coatnet/tpu
https://github.com/tensorflow/tpu/tree/master/models/official/coatnet/tpu
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/tpu
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/tpu
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://doi.org/10.1109/CVPR42600.2020.01044
https://doi.org/10.1109/CVPR42600.2020.01044
https://doi.org/10.1609/aaai.v33i01.33014780
https://dl.acm.org/doi/10.1007/s11263-015-0816-y
https://dl.acm.org/doi/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ICASSP.2013.6638949
https://doi.org/10.48550/arXiv.2109.08668

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Li et al.

Compact Deep Neural Network Representations (ODML-CDNNR 2019). https:
//doi.org/10.48550/arXiv.1905.04159

[50] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V. Le. 2019. MnasNet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. https://doi.org/10.48550/arXiv.1807.11626

[51] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. Proceedings of the International Conference on
Machine Learning (2019). https://doi.org/10.48550/arXiv.1905.11946

[52] Neil C. Thompson, Kristjan H. Greenewald, Keeheon Lee, and Gabriel F. Manso.
2020. The Computational Limits of Deep Learning. CoRR abs/2007.05558 (2020).
arXiv:2007.05558 https://arxiv.org/abs/2007.05558

[53] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan,
and Song Han. 2020. HAT: Hardware-Aware Transformers for Efficient Natural
Language Processing. In Annual Conference of the Association for Computational
Linguistics. http://dx.doi.org/10.18653/v1/2020.acl-main.686

[54] R. J. Williams. 1992. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. In Machine Learning, Vol. 8. 229–256. https:
//doi.org/10.1007/BF00992696

[55] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. Fbnet:
Hardware-aware efficient convnet design via differentiable neural architecture
search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 10734–10742. https://doi.org/10.1109/CVPR.2019.01099
[56] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans,

Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le.
2020. BigNAS: Scaling up Neural Architecture Search with Big Single-Stage
Models. In Proceedings of the European Conference on Computer Vision. https:
//doi.org/10.48550/arXiv.2003.11142

[57] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. 2022. Scaling
Vision Transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 12104–12113. https://doi.org/10.48550/arXiv.2106.
04560

[58] Yanqi Zhou, Siavash Ebrahimi, Sercan Ö Arık, Haonan Yu, Hairong Liu, and Greg
Diamos. 2018. Resource-efficient neural architect. arXiv preprint arXiv:1806.07912
(2018). https://doi.org/10.48550/arXiv.1806.07912

[59] Barret Zoph and Quoc V Le. 2017. Neural architecture search with reinforcement
learning. Proceedings of the International Conference on Learning Representations
(2017). https://doi.org/10.48550/arXiv.1611.01578

[60] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. http://dx.doi.
org/10.1109/CVPR.2018.00907

Received 2022-10-20; accepted 2023-01-19

358

https://doi.org/10.48550/arXiv.1905.04159
https://doi.org/10.48550/arXiv.1905.04159
https://doi.org/10.48550/arXiv.1807.11626
https://doi.org/10.48550/arXiv.1905.11946
https://arxiv.org/abs/2007.05558
https://arxiv.org/abs/2007.05558
http://dx.doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.48550/arXiv.2003.11142
https://doi.org/10.48550/arXiv.2003.11142
https://doi.org/10.48550/arXiv.2106.04560
https://doi.org/10.48550/arXiv.2106.04560
https://doi.org/10.48550/arXiv.1806.07912
https://doi.org/10.48550/arXiv.1611.01578
http://dx.doi.org/10.1109/CVPR.2018.00907
http://dx.doi.org/10.1109/CVPR.2018.00907

	Abstract
	1 Introduction
	2 Neural Architecture Search and the Challenges of Hyperscale
	2.1 Taxonomy of the State-of-the-Art NAS
	2.2 Challenges of Hyperscale Hardware

	3 System Design
	4 Hyperscale Hardware Optimized Search Algorithm with In-memory Data Pipeline
	4.1 A Unified Single Step Search Algorithm
	4.2 Parallelized Single Step Search Algorithm

	5 Hardware Optimized Search Space
	5.1 Design of DLRM Search Space
	5.2 Search Spaces for CNN and VIT

	6 Search Objectives for Hyperscale Hardware
	6.1 A Single-Sided Multi-Objective Reward Function
	6.2 Scalable ML-Driven Performance Model

	7 Deployment at Google Scale with High Efficiency
	7.1 H2O-NAS Pareto-Optimization for SoTA Models
	7.2 Energy Benefits of H2O-NAS
	7.3 H2O-NAS in Production at Scale

	8 Related Work
	9 Conclusions
	Acknowledgments
	A Search Space Details for VIT and CNN
	References

