
Cornell University

Efficient Data Supply for Hardware
Accelerators with Prefetching and Access/

Execute Decoupling

Tao Chen and G. Edward Suh

Computer Systems Laboratory

Cornell University

Tao ChenCornell University 2

Accelerator-Rich Computing Systems

• Computing systems are becoming accelerator-rich
• General-purpose cores + a large number of accelerators

• Challenge: Design and verification complexity
• Non-recurring engineering (NRE) cost per accelerator

• Manual efforts are a major source of cost
• Create computation pipelines
• Manage data supply from memory

High-Level Synthesis (HLS)

This work: An automated framework for
generating accelerators with efficient data supply

Tao ChenCornell University 3

Inefficiencies in Accelerator Data Supply

Scratchpad-based accelerators
• On-chip scratchpad memory (SPM)
• Manually designed logic to move

data between SPM and main
memory

• Pros: Good performance
• Cons: High design effort,

accelerator-specific, not reusable

Accelerator

Compute

Logic

Memory Bus

SPM Preload

Logic

Tao ChenCornell University 3

Inefficiencies in Accelerator Data Supply

Scratchpad-based accelerators
• On-chip scratchpad memory (SPM)
• Manually designed logic to move

data between SPM and main
memory

• Pros: Good performance
• Cons: High design effort,

accelerator-specific, not reusable

Cache-based accelerators
• Pros: Low design effort, cache can be reused
• Cons: Uncertain memory latency impacts performance

Accelerator

Compute

Logic

Memory Bus

Cache

Tao ChenCornell University 4

Optimize Data Supply for Cache-Based Accelerators

Approach: automated framework for generating
accelerators with efficient data supply

Accelerator
Source

Automated
Framework

Accelerator
w/ Efficient
Data Supply

Tao ChenCornell University 4

Optimize Data Supply for Cache-Based Accelerators

Approach: automated framework for generating
accelerators with efficient data supply

Accelerator
Source

Automated
Framework

Accelerator
w/ Efficient
Data Supply

Accelerator

Cache	 	

Memory Bus

Compute

Logic

Techniques
• Prefetching
• Tagging memory accesses

HW

Prefetcher

Tao ChenCornell University 4

Optimize Data Supply for Cache-Based Accelerators

Approach: automated framework for generating
accelerators with efficient data supply

Accelerator
Source

Automated
Framework

Accelerator
w/ Efficient
Data Supply

Accelerator

Cache	 	

Memory Bus

Techniques
• Prefetching
• Tagging memory accesses

• Access/Execute Decoupling
• Program slicing + architecture

template
HW

Prefetcher

Access

Logic

Execute

Logic

Tao ChenCornell University 5

Impact of Uncertain Memory Latency

• Example: Sparse Matrix Vector Multiplication (spmv)
• Pipeline generated with High-Level Synthesis (HLS)

// inner loop of sparse matrix
// vector multiplication

for (j = begin; j < end; j++) {
 #pragma HLS pipeline
 Si = val[j] * vec[cols[j]];
 sum = sum + Si;
}

LD
LD
LD

LD
LD LD

MUL

ADD
MUL

LD

ADD
MUL

LD
LD

ADD

LD

MUL

LD
LD

ADD

Time

HLS

Tao ChenCornell University 5

Impact of Uncertain Memory Latency

• Example: Sparse Matrix Vector Multiplication (spmv)
• Pipeline generated with High-Level Synthesis (HLS)

// inner loop of sparse matrix
// vector multiplication

for (j = begin; j < end; j++) {
 #pragma HLS pipeline
 Si = val[j] * vec[cols[j]];
 sum = sum + Si;
}

LD
LD
LD

LD
LD LD

MUL

ADD
MUL

LD

ADD
MUL

LD
LD

ADD

LD

MUL

LD
LD

ADD

miss

Time

A cache miss stalls the
entire accelerator pipeline

Regular
stride

Regular
strideIrregular

• Reduce cache misses for regular accesses
• Prefetch data into the cache

• Tolerate cache misses for irregular accesses
• Access/Execute Decoupling

HLS

Tao ChenCornell University 6

Hardware Prefetching

• Predict future memory accesses

• PC is often used as a hint
• Stream localization
• Spatial correlation prediction
for (j = begin; j < end; j++) {
 Si = val[j] * vec[cols[j]];
 sum = sum + Si;
}

2380

8010
541C

2384

8328
5420

2388

8454
5424

238C

81B8
5428

Global

Addr

Stream

●

●

●

Tao ChenCornell University 6

Hardware Prefetching

• Predict future memory accesses

• PC is often used as a hint
• Stream localization
• Spatial correlation prediction

• Problem: accelerators lack a PC

• Solution: generate PC-like tags for
accelerator memory accesses

for (j = begin; j < end; j++) {
 Si = val[j] * vec[cols[j]];
 sum = sum + Si;
}

2380

8010
541C

2384

8328
5420

2388

8454
5424

238C

81B8
5428

Global

Addr

Stream

2380

8010
541C

2384

8328
5420

2388

8454
5424

238C

81B8
5428

Local Addr
Streams

●

●

●

regular
strides

irregular
no pred

2380
2384
2388
238C

PC x
541C
5420
5424
5428

PC y
8010
8328
8454
81B8

PC z

Tao ChenCornell University 6

Hardware Prefetching

• Predict future memory accesses

• PC is often used as a hint
• Stream localization
• Spatial correlation prediction

• Problem: accelerators lack a PC

• Solution: generate PC-like tags for
accelerator memory accesses

for (j = begin; j < end; j++) {
 Si = val[j] * vec[cols[j]];
 sum = sum + Si;
}

2380

8010
541C

2384

8328
5420

2388

8454
5424

238C

81B8
5428

Global

Addr

Stream

2380

8010
541C

2384

8328
5420

2388

8454
5424

238C

81B8
5428

Local Addr
Streams

●

●

●

regular
strides

irregular
no pred

2380
2384
2388
238C

PC x
541C
5420
5424
5428

PC y
8010
8328
8454
81B8

PC z

BB1

BB3

LD

LD

LD

×

+

BB2

x

y
z

CDFG

Tao ChenCornell University 7

Decoupled Access/Execute (DAE)

• Limitations of Hardware Prefetching
• Not accurate for complex patterns / Needs warm-up time
• Fundamental reason: lack of semantic information

• Decoupled Access/Execute
• Allow memory accesses to run ahead to preload data

Time

Memory

Access

Value

Comp

memory
latency

Accelerator

Cache	 	

Memory Bus

HW

Prefetche

r

Access

Logic

Execute

Logic

Cache w/ DAE

ComputeManual
Preload

memory
latency

SPM w/ Manual Preload

Tao ChenCornell University 8

Traditional DAE is not Effective for Accelerators

• Traditional DAE: access part forwards data to execute part
• Problem: access pipeline stalls on misses
• Throughput is limited by access pipeline

• Goal: allow access pipeline to continue to flow under misses

MUL

ADD
MUL

ADD
MUL

ADD
MUL

ADD

LD
LD
LD

LD
LD LD

LD LD
LD

LD
LD
LD

LD
LD
LD

LD
LD LD

MUL

ADD
MUL

LD

ADD
MUL

LD
LD

ADD

LD

MUL

LD
LD

ADD

miss
Original

Decoupled
Access Execute

Tao ChenCornell University 9

DAE Accelerator with Decoupled Loads

• Anatomy of a load

• Solution: Delegate request/response handling

LD AGen
Req

Resp

LD
AGen
Req

Resp

AGen

Req
Resp

Tao ChenCornell University 10

Memory Unit

• Proxy for handling memory requests and responses
• Supports response reordering and store-to-load forwarding

Load Queue
to ExeU

Mem
Unit

Dep
Check

memreq memresp

Store Addr

Store Data
from ExeU

Load Addr

Store
Addr

Queue

Store
Data

Queue

Fwd
Data

Queue

Load Data to AccU

Fwd
Data

LD

Tao ChenCornell University 10

Memory Unit

• Proxy for handling memory requests and responses
• Supports response reordering and store-to-load forwarding

Load Queue
to ExeU

Mem
Unit

Dep
Check

memreq memresp

Store Addr

Store Data
from ExeU

Load Addr

Store
Addr

Queue

Store
Data

Queue

Fwd
Data

Queue

Load Data to AccU

Fwd
Data

LD

ST

Tao ChenCornell University 11

Automated DAE Accelerator Generation

• Program slicing for generating access/execute slices
• Architectural template with configurable parameters

accel.c

Architectural
Template

access.c execute.c
slicing slicing

access.v execute.v

HLS HLS

Access/Execute
Decoupled Accel

HW
GenerationParameters

• Queue sizes

• Port width

• MemUnit config

• etc

Written in PyMTL

Tao ChenCornell University 12

Evaluation Methodology

• Vertically integrated modeling methodology
• System components: cycle-level (gem5)
• Accelerators: register-transfer-level (Vivado HLS, PyMTL)
• Area, power and energy: gate-level (commercial ASIC flow)

• Benchmark accelerators from MachSuite
Name Description

bbgemm Blocked matrix multiplication
bfsbulk Breadth-First Search
gemm Dense matrix multiplication
mdknn Molecular dynamics (K-Nearest Neighbor)

nw Needleman-Wunsch algorithm
spmvcrs Sparse matrix vector multiplication
stencil2d 2D stencil computation

viterbi Viterbi algorithm

Tao ChenCornell University 13

Performance Comparison

• 2.28x speedup on average
• Prefetching and DAE work in synergy

Tao ChenCornell University 14

Energy Comparison

• 15% energy reduction on average because of reduced stalls
• MemUnits/queues only consume a small amount of energy

Tao ChenCornell University 15

More Details in the Paper

• Deadlock Avoidance
• Customization of Memory Units
• Baseline Validation
• Power and Area Comparison
• Energy, Power and Area Breakdown
• Sensitivity Study on Varying Queue Sizes
• Design Space Exploration: Queue Size Customization

Tao ChenCornell University 16

Summary

Cache-based accelerators
• Avoid the high design cost of manual data movement logic
• Problem: Inefficient in handling uncertain memory latency

Approach: Automated program analysis and architectural
template to generate accelerators with efficient data supply
• Tagging memory requests to enable prefetching
• Decoupling to enable memory accesses to run ahead

Results: High-performance cache-based accelerators with
minimal manual efforts

