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Accelerator-Rich Computing Systems

• Computing systems are becoming accelerator-rich 
• General-purpose cores + a large number of accelerators

• Challenge: Design and verification complexity 
• Non-recurring engineering (NRE) cost per accelerator

• Manual efforts are a major source of cost 
• Create computation pipelines 
• Manage data supply from memory

High-Level Synthesis (HLS)

This work: An automated framework for 
generating accelerators with efficient data supply
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Inefficiencies in Accelerator Data Supply

Scratchpad-based accelerators
• On-chip scratchpad memory (SPM)
• Manually designed logic to move 

data between SPM and main 
memory

• Pros: Good performance
• Cons: High design effort, 

accelerator-specific, not reusable
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Inefficiencies in Accelerator Data Supply

Scratchpad-based accelerators
• On-chip scratchpad memory (SPM)
• Manually designed logic to move 

data between SPM and main 
memory

• Pros: Good performance
• Cons: High design effort, 

accelerator-specific, not reusable

Cache-based accelerators
• Pros: Low design effort, cache can be reused
• Cons: Uncertain memory latency impacts performance
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Optimize Data Supply for Cache-Based Accelerators

Approach: automated framework for generating 
accelerators with efficient data supply
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Optimize Data Supply for Cache-Based Accelerators

Approach: automated framework for generating 
accelerators with efficient data supply
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Optimize Data Supply for Cache-Based Accelerators

Approach: automated framework for generating 
accelerators with efficient data supply
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Techniques
• Prefetching
• Tagging memory accesses

• Access/Execute Decoupling
• Program slicing + architecture 
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Impact of Uncertain Memory Latency

• Example: Sparse Matrix Vector Multiplication (spmv) 
• Pipeline generated with High-Level Synthesis (HLS)

// inner loop of sparse matrix
// vector multiplication

for (j = begin; j < end; j++) {
    #pragma HLS pipeline
    Si = val[j] * vec[cols[j]];
    sum = sum + Si;        
}
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Impact of Uncertain Memory Latency

• Example: Sparse Matrix Vector Multiplication (spmv) 
• Pipeline generated with High-Level Synthesis (HLS)

// inner loop of sparse matrix
// vector multiplication

for (j = begin; j < end; j++) {
    #pragma HLS pipeline
    Si = val[j] * vec[cols[j]];
    sum = sum + Si;        
}
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A cache miss stalls the 
entire accelerator pipeline
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• Reduce cache misses for regular accesses
• Prefetch data into the cache

• Tolerate cache misses for irregular accesses
• Access/Execute Decoupling

HLS
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Hardware Prefetching

• Predict future memory accesses

• PC is often used as a hint
• Stream localization
• Spatial correlation prediction
for (j = begin; j < end; j++) {
    Si = val[j] * vec[cols[j]];
    sum = sum + Si;        
}
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Hardware Prefetching

• Predict future memory accesses

• PC is often used as a hint
• Stream localization
• Spatial correlation prediction

• Problem: accelerators lack a PC

• Solution: generate PC-like tags for 
accelerator memory accesses

for (j = begin; j < end; j++) {
    Si = val[j] * vec[cols[j]];
    sum = sum + Si;        
}
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Hardware Prefetching

• Predict future memory accesses

• PC is often used as a hint
• Stream localization
• Spatial correlation prediction

• Problem: accelerators lack a PC

• Solution: generate PC-like tags for 
accelerator memory accesses

for (j = begin; j < end; j++) {
    Si = val[j] * vec[cols[j]];
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}
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Decoupled Access/Execute (DAE)

• Limitations of Hardware Prefetching
• Not accurate for complex patterns / Needs warm-up time
• Fundamental reason: lack of semantic information

• Decoupled Access/Execute
• Allow memory accesses to run ahead to preload data
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Traditional DAE is not Effective for Accelerators

• Traditional DAE: access part forwards data to execute part 
• Problem: access pipeline stalls on misses 
• Throughput is limited by access pipeline 

• Goal: allow access pipeline to continue to flow under misses
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DAE Accelerator with Decoupled Loads

• Anatomy of a load 

• Solution: Delegate request/response handling
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Memory Unit

• Proxy for handling memory requests and responses 
• Supports response reordering and store-to-load forwarding
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Memory Unit

• Proxy for handling memory requests and responses 
• Supports response reordering and store-to-load forwarding
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Automated DAE Accelerator Generation

• Program slicing for generating access/execute slices 
• Architectural template with configurable parameters

accel.c

Architectural 
Template

access.c execute.c
slicing slicing

access.v execute.v

HLS HLS

Access/Execute 
Decoupled Accel

HW 
GenerationParameters


• Queue sizes

• Port width

• MemUnit config

• etc

Written in PyMTL



Tao ChenCornell University 12

Evaluation Methodology

• Vertically integrated modeling methodology 
• System components: cycle-level (gem5) 
• Accelerators: register-transfer-level (Vivado HLS, PyMTL) 
• Area, power and energy: gate-level (commercial ASIC flow) 

• Benchmark accelerators from MachSuite
Name Description

bbgemm Blocked matrix multiplication
bfsbulk Breadth-First Search
gemm Dense matrix multiplication
mdknn Molecular dynamics (K-Nearest Neighbor)

nw Needleman-Wunsch algorithm
spmvcrs Sparse matrix vector multiplication
stencil2d 2D stencil computation

viterbi Viterbi algorithm
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Performance Comparison

• 2.28x speedup on average
• Prefetching and DAE work in synergy
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Energy Comparison

• 15% energy reduction on average because of reduced stalls
• MemUnits/queues only consume a small amount of energy
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More Details in the Paper

• Deadlock Avoidance 
• Customization of Memory Units 
• Baseline Validation 
• Power and Area Comparison 
• Energy, Power and Area Breakdown 
• Sensitivity Study on Varying Queue Sizes 
• Design Space Exploration: Queue Size Customization
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Summary

Cache-based accelerators
• Avoid the high design cost of manual data movement logic
• Problem: Inefficient in handling uncertain memory latency 

Approach: Automated program analysis and architectural 
template to generate accelerators with efficient data supply 
• Tagging memory requests to enable prefetching 
• Decoupling to enable memory accesses to run ahead 

Results: High-performance cache-based accelerators with 
minimal manual efforts


